| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iundif2 | Structured version Visualization version GIF version | ||
| Description: Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use intiin 5006 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
| Ref | Expression |
|---|---|
| iundif2 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3907 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
| 2 | 1 | rexbii 3079 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
| 3 | r19.42v 3164 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶)) | |
| 4 | rexnal 3084 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 5 | eliin 4944 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 6 | 5 | elv 3441 | . . . . . 6 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
| 7 | 4, 6 | xchbinxr 335 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) |
| 8 | 7 | anbi2i 623 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 9 | 2, 3, 8 | 3bitri 297 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 10 | eliun 4943 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) | |
| 11 | eldif 3907 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
| 12 | 9, 10, 11 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ 𝑦 ∈ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 13 | 12 | eqriv 2728 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∖ cdif 3894 ∪ ciun 4939 ∩ ciin 4940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3900 df-iun 4941 df-iin 4942 |
| This theorem is referenced by: iuncld 22960 pnrmopn 23258 alexsublem 23959 bcth3 25258 iundifdifd 32541 iundifdif 32542 |
| Copyright terms: Public domain | W3C validator |