Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iundif2 | Structured version Visualization version GIF version |
Description: Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use intiin 4968 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
Ref | Expression |
---|---|
iundif2 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3876 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
2 | 1 | rexbii 3170 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
3 | r19.42v 3263 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶)) | |
4 | rexnal 3160 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
5 | eliin 4909 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
6 | 5 | elv 3414 | . . . . . 6 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
7 | 4, 6 | xchbinxr 338 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) |
8 | 7 | anbi2i 626 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
9 | 2, 3, 8 | 3bitri 300 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
10 | eliun 4908 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) | |
11 | eldif 3876 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
12 | 9, 10, 11 | 3bitr4i 306 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ 𝑦 ∈ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶)) |
13 | 12 | eqriv 2734 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 Vcvv 3408 ∖ cdif 3863 ∪ ciun 4904 ∩ ciin 4905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-v 3410 df-dif 3869 df-iun 4906 df-iin 4907 |
This theorem is referenced by: iuncld 21942 pnrmopn 22240 alexsublem 22941 bcth3 24228 iundifdifd 30620 iundifdif 30621 |
Copyright terms: Public domain | W3C validator |