MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundif2 Structured version   Visualization version   GIF version

Theorem iundif2 4988
Description: Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use intiin 4975 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iundif2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iundif2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3945 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
21rexbii 3247 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶))
3 r19.42v 3350 . . . 4 (∃𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶))
4 rexnal 3238 . . . . . 6 (∃𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ ∀𝑥𝐴 𝑦𝐶)
5 eliin 4916 . . . . . . 7 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
65elv 3499 . . . . . 6 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
74, 6xchbinxr 337 . . . . 5 (∃𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ 𝑦 𝑥𝐴 𝐶)
87anbi2i 624 . . . 4 ((𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
92, 3, 83bitri 299 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
10 eliun 4915 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
11 eldif 3945 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
129, 10, 113bitr4i 305 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶))
1312eqriv 2818 1 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  cdif 3932   ciun 4911   ciin 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-v 3496  df-dif 3938  df-iun 4913  df-iin 4914
This theorem is referenced by:  iuncld  21647  pnrmopn  21945  alexsublem  22646  bcth3  23928  iundifdifd  30307  iundifdif  30308
  Copyright terms: Public domain W3C validator