![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2iunin | Structured version Visualization version GIF version |
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
2iunin | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 5094 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷)) |
3 | 2 | iuneq2i 5036 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
4 | iunin1 5095 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) | |
5 | 3, 4 | eqtri 2768 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-iun 5017 |
This theorem is referenced by: fpar 8157 |
Copyright terms: Public domain | W3C validator |