![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2iunin | Structured version Visualization version GIF version |
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
2iunin | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 4886 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷)) |
3 | 2 | iuneq2i 4839 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
4 | iunin1 4887 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) | |
5 | 3, 4 | eqtri 2817 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1520 ∈ wcel 2079 ∩ cin 3853 ∪ ciun 4819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-v 3434 df-in 3861 df-ss 3869 df-iun 4821 |
This theorem is referenced by: fpar 7658 |
Copyright terms: Public domain | W3C validator |