Proof of Theorem fiinfi
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fiinfi.a | . . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) | 
| 2 |  | elinel1 4201 | . . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐴) | 
| 3 |  | elinel1 4201 | . . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) → 𝑦 ∈ 𝐴) | 
| 4 | 3 | imim1i 63 | . . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝐴) → (𝑦 ∈ (𝐴 ∩ 𝐵) → (𝑥 ∩ 𝑦) ∈ 𝐴)) | 
| 5 | 4 | ralimi2 3078 | . . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐴) | 
| 6 | 2, 5 | imim12i 62 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) → (𝑥 ∈ (𝐴 ∩ 𝐵) → ∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐴)) | 
| 7 | 6 | ralimi2 3078 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐴) | 
| 8 | 1, 7 | syl 17 | . . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐴) | 
| 9 |  | fiinfi.b | . . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) | 
| 10 |  | elinel2 4202 | . . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐵) | 
| 11 |  | elinel2 4202 | . . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) → 𝑦 ∈ 𝐵) | 
| 12 | 11 | imim1i 63 | . . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐵 → (𝑥 ∩ 𝑦) ∈ 𝐵) → (𝑦 ∈ (𝐴 ∩ 𝐵) → (𝑥 ∩ 𝑦) ∈ 𝐵)) | 
| 13 | 12 | ralimi2 3078 | . . . . . . . . 9
⊢
(∀𝑦 ∈
𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵 → ∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐵) | 
| 14 | 10, 13 | imim12i 62 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 → ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐵) → ∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐵)) | 
| 15 | 14 | ralimi2 3078 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵 → ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐵) | 
| 16 | 9, 15 | syl 17 | . . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐵) | 
| 17 |  | r19.26-2 3138 | . . . . . 6
⊢
(∀𝑥 ∈
(𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)((𝑥 ∩ 𝑦) ∈ 𝐴 ∧ (𝑥 ∩ 𝑦) ∈ 𝐵) ↔ (∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐵)) | 
| 18 | 8, 16, 17 | sylanbrc 583 | . . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)((𝑥 ∩ 𝑦) ∈ 𝐴 ∧ (𝑥 ∩ 𝑦) ∈ 𝐵)) | 
| 19 |  | elin 3967 | . . . . . 6
⊢ ((𝑥 ∩ 𝑦) ∈ (𝐴 ∩ 𝐵) ↔ ((𝑥 ∩ 𝑦) ∈ 𝐴 ∧ (𝑥 ∩ 𝑦) ∈ 𝐵)) | 
| 20 | 19 | 2ralbii 3128 | . . . . 5
⊢
(∀𝑥 ∈
(𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ (𝐴 ∩ 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)((𝑥 ∩ 𝑦) ∈ 𝐴 ∧ (𝑥 ∩ 𝑦) ∈ 𝐵)) | 
| 21 | 18, 20 | sylibr 234 | . . . 4
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ (𝐴 ∩ 𝐵)) | 
| 22 |  | fiinfi.c | . . . . . . 7
⊢ (𝜑 → 𝐶 = (𝐴 ∩ 𝐵)) | 
| 23 | 22 | eleq2d 2827 | . . . . . 6
⊢ (𝜑 → ((𝑥 ∩ 𝑦) ∈ 𝐶 ↔ (𝑥 ∩ 𝑦) ∈ (𝐴 ∩ 𝐵))) | 
| 24 | 23 | ralbidv 3178 | . . . . 5
⊢ (𝜑 → (∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐶 ↔ ∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ (𝐴 ∩ 𝐵))) | 
| 25 | 24 | ralbidv 3178 | . . . 4
⊢ (𝜑 → (∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐶 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ (𝐴 ∩ 𝐵))) | 
| 26 | 21, 25 | mpbird 257 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐶) | 
| 27 | 22 | raleqdv 3326 | . . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶 ↔ ∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐶)) | 
| 28 | 27 | ralbidv 3178 | . . 3
⊢ (𝜑 → (∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ (𝐴 ∩ 𝐵)(𝑥 ∩ 𝑦) ∈ 𝐶)) | 
| 29 | 26, 28 | mpbird 257 | . 2
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶) | 
| 30 | 22 | raleqdv 3326 | . 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶)) | 
| 31 | 29, 30 | mpbird 257 | 1
⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶) |