MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom5 Structured version   Visualization version   GIF version

Theorem brdom5 10216
Description: An equivalence to a dominance relation. (Contributed by NM, 29-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom5 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom5
StepHypRef Expression
1 brdom3.2 . . . 4 𝐵 ∈ V
21brdom3 10215 . . 3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3 alral 3079 . . . . 5 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦)
43anim1i 614 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
54eximi 1838 . . 3 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
62, 5sylbi 216 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
7 inss2 4160 . . . . . . . . . . . . . 14 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
8 dmss 5800 . . . . . . . . . . . . . 14 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
97, 8ax-mp 5 . . . . . . . . . . . . 13 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
10 dmxpss 6063 . . . . . . . . . . . . 13 dom (𝐵 × 𝐴) ⊆ 𝐵
119, 10sstri 3926 . . . . . . . . . . . 12 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
1211sseli 3913 . . . . . . . . . . 11 (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝑥𝐵)
13 inss1 4159 . . . . . . . . . . . . 13 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
1413ssbri 5115 . . . . . . . . . . . 12 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
1514moimi 2545 . . . . . . . . . . 11 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
1612, 15imim12i 62 . . . . . . . . . 10 ((𝑥𝐵 → ∃*𝑦 𝑥𝑓𝑦) → (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
1716ralimi2 3083 . . . . . . . . 9 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
18 relinxp 5713 . . . . . . . . 9 Rel (𝑓 ∩ (𝐵 × 𝐴))
1917, 18jctil 519 . . . . . . . 8 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
20 dffun7 6445 . . . . . . . 8 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2119, 20sylibr 233 . . . . . . 7 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
2221funfnd 6449 . . . . . 6 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
23 rninxp 6071 . . . . . . 7 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
2423biimpri 227 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
2522, 24anim12i 612 . . . . 5 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
26 df-fo 6424 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
2725, 26sylibr 233 . . . 4 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
28 vex 3426 . . . . . . 7 𝑓 ∈ V
2928inex1 5236 . . . . . 6 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
3029dmex 7732 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
3130fodom 10210 . . . 4 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
32 ssdomg 8741 . . . . . 6 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
331, 11, 32mp2 9 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
34 domtr 8748 . . . . 5 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
3533, 34mpan2 687 . . . 4 (𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝐴𝐵)
3627, 31, 353syl 18 . . 3 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
3736exlimiv 1934 . 2 (∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
386, 37impbii 208 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  ∃*wmo 2538  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883   class class class wbr 5070   × cxp 5578  dom cdm 5580  ran crn 5581  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413  ontowfo 6416  cdom 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-card 9628  df-acn 9631  df-ac 9803
This theorem is referenced by:  brdom6disj  10219
  Copyright terms: Public domain W3C validator