MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom5 Structured version   Visualization version   GIF version

Theorem brdom5 9634
Description: An equivalence to a dominance relation. (Contributed by NM, 29-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom5 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom5
StepHypRef Expression
1 brdom3.2 . . . 4 𝐵 ∈ V
21brdom3 9633 . . 3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3 alral 3114 . . . . 5 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦)
43anim1i 604 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
54eximi 1919 . . 3 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
62, 5sylbi 208 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
7 inss2 4028 . . . . . . . . . . . . . 14 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
8 dmss 5522 . . . . . . . . . . . . . 14 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
97, 8ax-mp 5 . . . . . . . . . . . . 13 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
10 dmxpss 5774 . . . . . . . . . . . . 13 dom (𝐵 × 𝐴) ⊆ 𝐵
119, 10sstri 3805 . . . . . . . . . . . 12 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
1211sseli 3792 . . . . . . . . . . 11 (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝑥𝐵)
13 inss1 4027 . . . . . . . . . . . . 13 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
1413ssbri 4887 . . . . . . . . . . . 12 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
1514moimi 2681 . . . . . . . . . . 11 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
1612, 15imim12i 62 . . . . . . . . . 10 ((𝑥𝐵 → ∃*𝑦 𝑥𝑓𝑦) → (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
1716ralimi2 3135 . . . . . . . . 9 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
18 relxp 5326 . . . . . . . . . 10 Rel (𝐵 × 𝐴)
19 relin2 5436 . . . . . . . . . 10 (Rel (𝐵 × 𝐴) → Rel (𝑓 ∩ (𝐵 × 𝐴)))
2018, 19ax-mp 5 . . . . . . . . 9 Rel (𝑓 ∩ (𝐵 × 𝐴))
2117, 20jctil 511 . . . . . . . 8 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
22 dffun7 6126 . . . . . . . 8 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
2321, 22sylibr 225 . . . . . . 7 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
24 funfn 6129 . . . . . . 7 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
2523, 24sylib 209 . . . . . 6 (∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
26 rninxp 5782 . . . . . . 7 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
2726biimpri 219 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
2825, 27anim12i 602 . . . . 5 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
29 df-fo 6105 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
3028, 29sylibr 225 . . . 4 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
31 vex 3392 . . . . . . 7 𝑓 ∈ V
3231inex1 4992 . . . . . 6 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
3332dmex 7327 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
3433fodom 9627 . . . 4 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
35 ssdomg 8236 . . . . . 6 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
361, 11, 35mp2 9 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
37 domtr 8243 . . . . 5 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
3836, 37mpan2 674 . . . 4 (𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝐴𝐵)
3930, 34, 383syl 18 . . 3 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
4039exlimiv 2021 . 2 (∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
416, 40impbii 200 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  wal 1635   = wceq 1637  wex 1859  wcel 2156  ∃*wmo 2631  wral 3094  wrex 3095  Vcvv 3389  cin 3766  wss 3767   class class class wbr 4842   × cxp 5307  dom cdm 5309  ran crn 5310  Rel wrel 5314  Fun wfun 6093   Fn wfn 6094  ontowfo 6097  cdom 8188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2782  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5094  ax-un 7177  ax-ac2 9568
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2791  df-cleq 2797  df-clel 2800  df-nfc 2935  df-ne 2977  df-ral 3099  df-rex 3100  df-reu 3101  df-rmo 3102  df-rab 3103  df-v 3391  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4115  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5217  df-eprel 5222  df-po 5230  df-so 5231  df-fr 5268  df-se 5269  df-we 5270  df-xp 5315  df-rel 5316  df-cnv 5317  df-co 5318  df-dm 5319  df-rn 5320  df-res 5321  df-ima 5322  df-pred 5891  df-ord 5937  df-on 5938  df-suc 5940  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6833  df-ov 6875  df-oprab 6876  df-mpt2 6877  df-1st 7396  df-2nd 7397  df-wrecs 7640  df-recs 7702  df-er 7977  df-map 8092  df-en 8191  df-dom 8192  df-sdom 8193  df-card 9046  df-acn 9049  df-ac 9220
This theorem is referenced by:  brdom6disj  9637
  Copyright terms: Public domain W3C validator