Proof of Theorem brdom5
Step | Hyp | Ref
| Expression |
1 | | brdom3.2 |
. . . 4
⊢ 𝐵 ∈ V |
2 | 1 | brdom3 10215 |
. . 3
⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) |
3 | | alral 3079 |
. . . . 5
⊢
(∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑓𝑦) |
4 | 3 | anim1i 614 |
. . . 4
⊢
((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥) → (∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) |
5 | 4 | eximi 1838 |
. . 3
⊢
(∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥) → ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) |
6 | 2, 5 | sylbi 216 |
. 2
⊢ (𝐴 ≼ 𝐵 → ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) |
7 | | inss2 4160 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) |
8 | | dmss 5800 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ dom
(𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴) |
10 | | dmxpss 6063 |
. . . . . . . . . . . . 13
⊢ dom
(𝐵 × 𝐴) ⊆ 𝐵 |
11 | 9, 10 | sstri 3926 |
. . . . . . . . . . . 12
⊢ dom
(𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 |
12 | 11 | sseli 3913 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝑥 ∈ 𝐵) |
13 | | inss1 4159 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓 |
14 | 13 | ssbri 5115 |
. . . . . . . . . . . 12
⊢ (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦 → 𝑥𝑓𝑦) |
15 | 14 | moimi 2545 |
. . . . . . . . . . 11
⊢
(∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦) |
16 | 12, 15 | imim12i 62 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 → ∃*𝑦 𝑥𝑓𝑦) → (𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴)) → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)) |
17 | 16 | ralimi2 3083 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 𝑥𝑓𝑦 → ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦) |
18 | | relinxp 5713 |
. . . . . . . . 9
⊢ Rel
(𝑓 ∩ (𝐵 × 𝐴)) |
19 | 17, 18 | jctil 519 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 𝑥𝑓𝑦 → (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)) |
20 | | dffun7 6445 |
. . . . . . . 8
⊢ (Fun
(𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥 ∈ dom (𝑓 ∩ (𝐵 × 𝐴))∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)) |
21 | 19, 20 | sylibr 233 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴))) |
22 | 21 | funfnd 6449 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴))) |
23 | | rninxp 6071 |
. . . . . . 7
⊢ (ran
(𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥) |
24 | 23 | biimpri 227 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴) |
25 | 22, 24 | anim12i 612 |
. . . . 5
⊢
((∀𝑥 ∈
𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)) |
26 | | df-fo 6424 |
. . . . 5
⊢ ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto→𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)) |
27 | 25, 26 | sylibr 233 |
. . . 4
⊢
((∀𝑥 ∈
𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto→𝐴) |
28 | | vex 3426 |
. . . . . . 7
⊢ 𝑓 ∈ V |
29 | 28 | inex1 5236 |
. . . . . 6
⊢ (𝑓 ∩ (𝐵 × 𝐴)) ∈ V |
30 | 29 | dmex 7732 |
. . . . 5
⊢ dom
(𝑓 ∩ (𝐵 × 𝐴)) ∈ V |
31 | 30 | fodom 10210 |
. . . 4
⊢ ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto→𝐴 → 𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴))) |
32 | | ssdomg 8741 |
. . . . . 6
⊢ (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵)) |
33 | 1, 11, 32 | mp2 9 |
. . . . 5
⊢ dom
(𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵 |
34 | | domtr 8748 |
. . . . 5
⊢ ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴 ≼ 𝐵) |
35 | 33, 34 | mpan2 687 |
. . . 4
⊢ (𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝐴 ≼ 𝐵) |
36 | 27, 31, 35 | 3syl 18 |
. . 3
⊢
((∀𝑥 ∈
𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥) → 𝐴 ≼ 𝐵) |
37 | 36 | exlimiv 1934 |
. 2
⊢
(∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥) → 𝐴 ≼ 𝐵) |
38 | 6, 37 | impbii 208 |
1
⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) |