Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inindi | Structured version Visualization version GIF version |
Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
inindi | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 4149 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
2 | 1 | ineq1i 4139 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
3 | in4 4156 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | |
4 | 2, 3 | eqtr3i 2768 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: difundi 4210 dfif5 4472 resindi 5896 offres 7799 incexclem 15476 bitsinv1 16077 bitsinvp1 16084 bitsres 16108 fh1 29881 |
Copyright terms: Public domain | W3C validator |