| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inindi | Structured version Visualization version GIF version | ||
| Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| inindi | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 4207 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 2 | 1 | ineq1i 4196 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| 3 | in4 4214 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | |
| 4 | 2, 3 | eqtr3i 2759 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-in 3938 |
| This theorem is referenced by: difundi 4270 dfif5 4522 resindi 5993 offres 7990 incexclem 15854 bitsinv1 16461 bitsinvp1 16468 bitsres 16492 fh1 31565 |
| Copyright terms: Public domain | W3C validator |