MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inindi Structured version   Visualization version   GIF version

Theorem inindi 4200
Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
Assertion
Ref Expression
inindi (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem inindi
StepHypRef Expression
1 inidm 4192 . . 3 (𝐴𝐴) = 𝐴
21ineq1i 4181 . 2 ((𝐴𝐴) ∩ (𝐵𝐶)) = (𝐴 ∩ (𝐵𝐶))
3 in4 4199 . 2 ((𝐴𝐴) ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
42, 3eqtr3i 2755 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3923
This theorem is referenced by:  difundi  4255  dfif5  4507  resindi  5968  offres  7964  incexclem  15808  bitsinv1  16418  bitsinvp1  16425  bitsres  16449  fh1  31553
  Copyright terms: Public domain W3C validator