MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inindi Structured version   Visualization version   GIF version

Theorem inindi 4127
Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
Assertion
Ref Expression
inindi (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem inindi
StepHypRef Expression
1 inidm 4119 . . 3 (𝐴𝐴) = 𝐴
21ineq1i 4109 . 2 ((𝐴𝐴) ∩ (𝐵𝐶)) = (𝐴 ∩ (𝐵𝐶))
3 in4 4126 . 2 ((𝐴𝐴) ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
42, 3eqtr3i 2764 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cin 3852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-rab 3063  df-v 3402  df-in 3860
This theorem is referenced by:  difundi  4180  dfif5  4440  resindi  5851  offres  7721  incexclem  15296  bitsinv1  15897  bitsinvp1  15904  bitsres  15928  fh1  29565
  Copyright terms: Public domain W3C validator