Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inindi Structured version   Visualization version   GIF version

Theorem inindi 4203
 Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
Assertion
Ref Expression
inindi (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem inindi
StepHypRef Expression
1 inidm 4195 . . 3 (𝐴𝐴) = 𝐴
21ineq1i 4185 . 2 ((𝐴𝐴) ∩ (𝐵𝐶)) = (𝐴 ∩ (𝐵𝐶))
3 in4 4202 . 2 ((𝐴𝐴) ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
42, 3eqtr3i 2846 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1533   ∩ cin 3935 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3497  df-in 3943 This theorem is referenced by:  difundi  4256  dfif5  4483  resindi  5864  offres  7678  incexclem  15185  bitsinv1  15785  bitsinvp1  15792  bitsres  15816  fh1  29389
 Copyright terms: Public domain W3C validator