| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inindi | Structured version Visualization version GIF version | ||
| Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| inindi | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 4192 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 2 | 1 | ineq1i 4181 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| 3 | in4 4199 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | |
| 4 | 2, 3 | eqtr3i 2755 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3923 |
| This theorem is referenced by: difundi 4255 dfif5 4507 resindi 5968 offres 7964 incexclem 15808 bitsinv1 16418 bitsinvp1 16425 bitsres 16449 fh1 31553 |
| Copyright terms: Public domain | W3C validator |