Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inindi | Structured version Visualization version GIF version |
Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
inindi | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 4152 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
2 | 1 | ineq1i 4142 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
3 | in4 4159 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | |
4 | 2, 3 | eqtr3i 2768 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 |
This theorem is referenced by: difundi 4213 dfif5 4475 resindi 5907 offres 7826 incexclem 15548 bitsinv1 16149 bitsinvp1 16156 bitsres 16180 fh1 29980 |
Copyright terms: Public domain | W3C validator |