HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  fh2 Structured version   Visualization version   GIF version

Theorem fh2 29405
Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
fh2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))

Proof of Theorem fh2
StepHypRef Expression
1 chincl 29285 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
2 chincl 29285 . . . . . . . 8 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
3 chjcl 29143 . . . . . . . 8 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
41, 2, 3syl2an 598 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
54anandis 677 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
6 chjcl 29143 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
7 chincl 29285 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
86, 7sylan2 595 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
9 chsh 29010 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∈ C → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
108, 9syl 17 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
115, 10jca 515 . . . . 5 ((𝐴C ∧ (𝐵C𝐶C )) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
12113impb 1112 . . . 4 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
1312adantr 484 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
14 ledi 29326 . . . 4 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
1514adantr 484 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
16 chdmj1 29315 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
171, 2, 16syl2an 598 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
18 chdmm1 29311 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
1918adantr 484 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
2019ineq1d 4141 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2117, 20eqtrd 2836 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
22213impdi 1347 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2322ineq2d 4142 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
2423adantr 484 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
25 in4 4155 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶))))
26 cmcm2 29402 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
27 cmcm 29400 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 𝐶 𝐴))
28 choccl 29092 . . . . . . . . . . . . . 14 (𝐵C → (⊥‘𝐵) ∈ C )
29 cmbr3 29394 . . . . . . . . . . . . . 14 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3028, 29sylan2 595 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3126, 27, 303bitr3d 312 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (𝐵 𝐶 𝐴 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3231biimpa 480 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
33 incom 4131 . . . . . . . . . . 11 (𝐴 ∩ (⊥‘𝐵)) = ((⊥‘𝐵) ∩ 𝐴)
3432, 33eqtrdi 2852 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
35343adantl3 1165 . . . . . . . . 9 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3635adantrr 716 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3736ineq1d 4141 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3825, 37syl5eq 2848 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3924, 38eqtrd 2836 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
40 in4 4155 . . . . 5 (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))
4139, 40eqtrdi 2852 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
42 ococ 29192 . . . . . . . . . . 11 (𝐵C → (⊥‘(⊥‘𝐵)) = 𝐵)
4342oveq1d 7154 . . . . . . . . . 10 (𝐵C → ((⊥‘(⊥‘𝐵)) ∨ 𝐶) = (𝐵 𝐶))
4443ineq2d 4142 . . . . . . . . 9 (𝐵C → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
45443ad2ant2 1131 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
4645adantr 484 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
47 cmcm3 29401 . . . . . . . . . . 11 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ (⊥‘𝐵) 𝐶 𝐶))
48 cmbr3 29394 . . . . . . . . . . . 12 (((⊥‘𝐵) ∈ C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
4928, 48sylan 583 . . . . . . . . . . 11 ((𝐵C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5047, 49bitrd 282 . . . . . . . . . 10 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5150biimpa 480 . . . . . . . . 9 (((𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
52513adantl1 1163 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5352adantrl 715 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5446, 53eqtr3d 2838 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ (𝐵 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5554ineq1d 4141 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
56 inass 4149 . . . . . . . . 9 (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
57 in12 4150 . . . . . . . . . . . 12 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
58 inass 4149 . . . . . . . . . . . 12 ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
5957, 58eqtr4i 2827 . . . . . . . . . . 11 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶)))
60 chocin 29281 . . . . . . . . . . . 12 ((𝐴𝐶) ∈ C → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
612, 60syl 17 . . . . . . . . . . 11 ((𝐴C𝐶C ) → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
6259, 61syl5eq 2848 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
6362ineq2d 4142 . . . . . . . . 9 ((𝐴C𝐶C ) → ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))) = ((⊥‘𝐵) ∩ 0))
6456, 63syl5eq 2848 . . . . . . . 8 ((𝐴C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
65643adant2 1128 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
66 chm0 29277 . . . . . . . . 9 ((⊥‘𝐵) ∈ C → ((⊥‘𝐵) ∩ 0) = 0)
6728, 66syl 17 . . . . . . . 8 (𝐵C → ((⊥‘𝐵) ∩ 0) = 0)
68673ad2ant2 1131 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ 0) = 0)
6965, 68eqtrd 2836 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7069adantr 484 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7155, 70eqtrd 2836 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7241, 71eqtrd 2836 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)
73 pjoml 29222 . . 3 (((((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ) ∧ (((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)) ∧ ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7413, 15, 72, 73syl12anc 835 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7574eqcomd 2807 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  cin 3883  wss 3884   class class class wbr 5033  cfv 6328  (class class class)co 7139   S csh 28714   C cch 28715  cort 28716   chj 28719  0c0h 28721   𝐶 ccm 28722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610  ax-hilex 28785  ax-hfvadd 28786  ax-hvcom 28787  ax-hvass 28788  ax-hv0cl 28789  ax-hvaddid 28790  ax-hfvmul 28791  ax-hvmulid 28792  ax-hvmulass 28793  ax-hvdistr1 28794  ax-hvdistr2 28795  ax-hvmul0 28796  ax-hfi 28865  ax-his1 28868  ax-his2 28869  ax-his3 28870  ax-his4 28871  ax-hcompl 28988
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-cn 21835  df-cnp 21836  df-lm 21837  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cfil 23862  df-cau 23863  df-cmet 23864  df-grpo 28279  df-gid 28280  df-ginv 28281  df-gdiv 28282  df-ablo 28331  df-vc 28345  df-nv 28378  df-va 28381  df-ba 28382  df-sm 28383  df-0v 28384  df-vs 28385  df-nmcv 28386  df-ims 28387  df-dip 28487  df-ssp 28508  df-ph 28599  df-cbn 28649  df-hnorm 28754  df-hba 28755  df-hvsub 28757  df-hlim 28758  df-hcau 28759  df-sh 28993  df-ch 29007  df-oc 29038  df-ch0 29039  df-shs 29094  df-chj 29096  df-cm 29369
This theorem is referenced by:  fh2i  29408  atordi  30170  chirredlem2  30177
  Copyright terms: Public domain W3C validator