HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  fh2 Structured version   Visualization version   GIF version

Theorem fh2 31597
Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
fh2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))

Proof of Theorem fh2
StepHypRef Expression
1 chincl 31477 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
2 chincl 31477 . . . . . . . 8 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
3 chjcl 31335 . . . . . . . 8 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
41, 2, 3syl2an 596 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
54anandis 678 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
6 chjcl 31335 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
7 chincl 31477 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
86, 7sylan2 593 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
9 chsh 31202 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∈ C → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
108, 9syl 17 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
115, 10jca 511 . . . . 5 ((𝐴C ∧ (𝐵C𝐶C )) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
12113impb 1114 . . . 4 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
1312adantr 480 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
14 ledi 31518 . . . 4 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
1514adantr 480 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
16 chdmj1 31507 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
171, 2, 16syl2an 596 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
18 chdmm1 31503 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
1918adantr 480 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
2019ineq1d 4169 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2117, 20eqtrd 2766 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
22213impdi 1351 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2322ineq2d 4170 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
2423adantr 480 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
25 in4 4184 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶))))
26 cmcm2 31594 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
27 cmcm 31592 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 𝐶 𝐴))
28 choccl 31284 . . . . . . . . . . . . . 14 (𝐵C → (⊥‘𝐵) ∈ C )
29 cmbr3 31586 . . . . . . . . . . . . . 14 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3028, 29sylan2 593 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3126, 27, 303bitr3d 309 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (𝐵 𝐶 𝐴 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3231biimpa 476 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
33 incom 4159 . . . . . . . . . . 11 (𝐴 ∩ (⊥‘𝐵)) = ((⊥‘𝐵) ∩ 𝐴)
3432, 33eqtrdi 2782 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
35343adantl3 1169 . . . . . . . . 9 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3635adantrr 717 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3736ineq1d 4169 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3825, 37eqtrid 2778 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3924, 38eqtrd 2766 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
40 in4 4184 . . . . 5 (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))
4139, 40eqtrdi 2782 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
42 ococ 31384 . . . . . . . . . . 11 (𝐵C → (⊥‘(⊥‘𝐵)) = 𝐵)
4342oveq1d 7361 . . . . . . . . . 10 (𝐵C → ((⊥‘(⊥‘𝐵)) ∨ 𝐶) = (𝐵 𝐶))
4443ineq2d 4170 . . . . . . . . 9 (𝐵C → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
45443ad2ant2 1134 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
4645adantr 480 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
47 cmcm3 31593 . . . . . . . . . . 11 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ (⊥‘𝐵) 𝐶 𝐶))
48 cmbr3 31586 . . . . . . . . . . . 12 (((⊥‘𝐵) ∈ C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
4928, 48sylan 580 . . . . . . . . . . 11 ((𝐵C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5047, 49bitrd 279 . . . . . . . . . 10 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5150biimpa 476 . . . . . . . . 9 (((𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
52513adantl1 1167 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5352adantrl 716 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5446, 53eqtr3d 2768 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ (𝐵 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5554ineq1d 4169 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
56 inass 4178 . . . . . . . . 9 (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
57 in12 4179 . . . . . . . . . . . 12 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
58 inass 4178 . . . . . . . . . . . 12 ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
5957, 58eqtr4i 2757 . . . . . . . . . . 11 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶)))
60 chocin 31473 . . . . . . . . . . . 12 ((𝐴𝐶) ∈ C → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
612, 60syl 17 . . . . . . . . . . 11 ((𝐴C𝐶C ) → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
6259, 61eqtrid 2778 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
6362ineq2d 4170 . . . . . . . . 9 ((𝐴C𝐶C ) → ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))) = ((⊥‘𝐵) ∩ 0))
6456, 63eqtrid 2778 . . . . . . . 8 ((𝐴C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
65643adant2 1131 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
66 chm0 31469 . . . . . . . . 9 ((⊥‘𝐵) ∈ C → ((⊥‘𝐵) ∩ 0) = 0)
6728, 66syl 17 . . . . . . . 8 (𝐵C → ((⊥‘𝐵) ∩ 0) = 0)
68673ad2ant2 1134 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ 0) = 0)
6965, 68eqtrd 2766 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7069adantr 480 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7155, 70eqtrd 2766 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7241, 71eqtrd 2766 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)
73 pjoml 31414 . . 3 (((((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ) ∧ (((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)) ∧ ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7413, 15, 72, 73syl12anc 836 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7574eqcomd 2737 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3901  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346   S csh 30906   C cch 30907  cort 30908   chj 30911  0c0h 30913   𝐶 ccm 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086  ax-hilex 30977  ax-hfvadd 30978  ax-hvcom 30979  ax-hvass 30980  ax-hv0cl 30981  ax-hvaddid 30982  ax-hfvmul 30983  ax-hvmulid 30984  ax-hvmulass 30985  ax-hvdistr1 30986  ax-hvdistr2 30987  ax-hvmul0 30988  ax-hfi 31057  ax-his1 31060  ax-his2 31061  ax-his3 31062  ax-his4 31063  ax-hcompl 31180
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-cn 23143  df-cnp 23144  df-lm 23145  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cfil 25183  df-cau 25184  df-cmet 25185  df-grpo 30471  df-gid 30472  df-ginv 30473  df-gdiv 30474  df-ablo 30523  df-vc 30537  df-nv 30570  df-va 30573  df-ba 30574  df-sm 30575  df-0v 30576  df-vs 30577  df-nmcv 30578  df-ims 30579  df-dip 30679  df-ssp 30700  df-ph 30791  df-cbn 30841  df-hnorm 30946  df-hba 30947  df-hvsub 30949  df-hlim 30950  df-hcau 30951  df-sh 31185  df-ch 31199  df-oc 31230  df-ch0 31231  df-shs 31286  df-chj 31288  df-cm 31561
This theorem is referenced by:  fh2i  31600  atordi  32362  chirredlem2  32369
  Copyright terms: Public domain W3C validator