HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  fh2 Structured version   Visualization version   GIF version

Theorem fh2 29981
Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
fh2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))

Proof of Theorem fh2
StepHypRef Expression
1 chincl 29861 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
2 chincl 29861 . . . . . . . 8 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
3 chjcl 29719 . . . . . . . 8 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
41, 2, 3syl2an 596 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
54anandis 675 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
6 chjcl 29719 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
7 chincl 29861 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
86, 7sylan2 593 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
9 chsh 29586 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∈ C → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
108, 9syl 17 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
115, 10jca 512 . . . . 5 ((𝐴C ∧ (𝐵C𝐶C )) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
12113impb 1114 . . . 4 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
1312adantr 481 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
14 ledi 29902 . . . 4 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
1514adantr 481 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
16 chdmj1 29891 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
171, 2, 16syl2an 596 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
18 chdmm1 29887 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
1918adantr 481 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
2019ineq1d 4145 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2117, 20eqtrd 2778 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
22213impdi 1349 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2322ineq2d 4146 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
2423adantr 481 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
25 in4 4159 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶))))
26 cmcm2 29978 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
27 cmcm 29976 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 𝐶 𝐴))
28 choccl 29668 . . . . . . . . . . . . . 14 (𝐵C → (⊥‘𝐵) ∈ C )
29 cmbr3 29970 . . . . . . . . . . . . . 14 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3028, 29sylan2 593 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3126, 27, 303bitr3d 309 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (𝐵 𝐶 𝐴 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3231biimpa 477 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
33 incom 4135 . . . . . . . . . . 11 (𝐴 ∩ (⊥‘𝐵)) = ((⊥‘𝐵) ∩ 𝐴)
3432, 33eqtrdi 2794 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
35343adantl3 1167 . . . . . . . . 9 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3635adantrr 714 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3736ineq1d 4145 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3825, 37eqtrid 2790 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3924, 38eqtrd 2778 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
40 in4 4159 . . . . 5 (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))
4139, 40eqtrdi 2794 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
42 ococ 29768 . . . . . . . . . . 11 (𝐵C → (⊥‘(⊥‘𝐵)) = 𝐵)
4342oveq1d 7290 . . . . . . . . . 10 (𝐵C → ((⊥‘(⊥‘𝐵)) ∨ 𝐶) = (𝐵 𝐶))
4443ineq2d 4146 . . . . . . . . 9 (𝐵C → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
45443ad2ant2 1133 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
4645adantr 481 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
47 cmcm3 29977 . . . . . . . . . . 11 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ (⊥‘𝐵) 𝐶 𝐶))
48 cmbr3 29970 . . . . . . . . . . . 12 (((⊥‘𝐵) ∈ C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
4928, 48sylan 580 . . . . . . . . . . 11 ((𝐵C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5047, 49bitrd 278 . . . . . . . . . 10 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5150biimpa 477 . . . . . . . . 9 (((𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
52513adantl1 1165 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5352adantrl 713 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5446, 53eqtr3d 2780 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ (𝐵 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5554ineq1d 4145 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
56 inass 4153 . . . . . . . . 9 (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
57 in12 4154 . . . . . . . . . . . 12 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
58 inass 4153 . . . . . . . . . . . 12 ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
5957, 58eqtr4i 2769 . . . . . . . . . . 11 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶)))
60 chocin 29857 . . . . . . . . . . . 12 ((𝐴𝐶) ∈ C → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
612, 60syl 17 . . . . . . . . . . 11 ((𝐴C𝐶C ) → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
6259, 61eqtrid 2790 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
6362ineq2d 4146 . . . . . . . . 9 ((𝐴C𝐶C ) → ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))) = ((⊥‘𝐵) ∩ 0))
6456, 63eqtrid 2790 . . . . . . . 8 ((𝐴C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
65643adant2 1130 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
66 chm0 29853 . . . . . . . . 9 ((⊥‘𝐵) ∈ C → ((⊥‘𝐵) ∩ 0) = 0)
6728, 66syl 17 . . . . . . . 8 (𝐵C → ((⊥‘𝐵) ∩ 0) = 0)
68673ad2ant2 1133 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ 0) = 0)
6965, 68eqtrd 2778 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7069adantr 481 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7155, 70eqtrd 2778 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7241, 71eqtrd 2778 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)
73 pjoml 29798 . . 3 (((((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ) ∧ (((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)) ∧ ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7413, 15, 72, 73syl12anc 834 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7574eqcomd 2744 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275   S csh 29290   C cch 29291  cort 29292   chj 29295  0c0h 29297   𝐶 ccm 29298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615  df-shs 29670  df-chj 29672  df-cm 29945
This theorem is referenced by:  fh2i  29984  atordi  30746  chirredlem2  30753
  Copyright terms: Public domain W3C validator