HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  fh2 Structured version   Visualization version   GIF version

Theorem fh2 31601
Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
fh2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))

Proof of Theorem fh2
StepHypRef Expression
1 chincl 31481 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
2 chincl 31481 . . . . . . . 8 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
3 chjcl 31339 . . . . . . . 8 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
41, 2, 3syl2an 596 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
54anandis 678 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
6 chjcl 31339 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
7 chincl 31481 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
86, 7sylan2 593 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
9 chsh 31206 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∈ C → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
108, 9syl 17 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
115, 10jca 511 . . . . 5 ((𝐴C ∧ (𝐵C𝐶C )) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
12113impb 1114 . . . 4 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
1312adantr 480 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
14 ledi 31522 . . . 4 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
1514adantr 480 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
16 chdmj1 31511 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
171, 2, 16syl2an 596 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
18 chdmm1 31507 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
1918adantr 480 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
2019ineq1d 4168 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2117, 20eqtrd 2768 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
22213impdi 1351 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2322ineq2d 4169 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
2423adantr 480 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
25 in4 4183 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶))))
26 cmcm2 31598 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
27 cmcm 31596 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 𝐶 𝐴))
28 choccl 31288 . . . . . . . . . . . . . 14 (𝐵C → (⊥‘𝐵) ∈ C )
29 cmbr3 31590 . . . . . . . . . . . . . 14 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3028, 29sylan2 593 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3126, 27, 303bitr3d 309 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (𝐵 𝐶 𝐴 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3231biimpa 476 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
33 incom 4158 . . . . . . . . . . 11 (𝐴 ∩ (⊥‘𝐵)) = ((⊥‘𝐵) ∩ 𝐴)
3432, 33eqtrdi 2784 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
35343adantl3 1169 . . . . . . . . 9 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3635adantrr 717 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3736ineq1d 4168 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3825, 37eqtrid 2780 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3924, 38eqtrd 2768 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
40 in4 4183 . . . . 5 (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))
4139, 40eqtrdi 2784 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
42 ococ 31388 . . . . . . . . . . 11 (𝐵C → (⊥‘(⊥‘𝐵)) = 𝐵)
4342oveq1d 7367 . . . . . . . . . 10 (𝐵C → ((⊥‘(⊥‘𝐵)) ∨ 𝐶) = (𝐵 𝐶))
4443ineq2d 4169 . . . . . . . . 9 (𝐵C → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
45443ad2ant2 1134 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
4645adantr 480 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
47 cmcm3 31597 . . . . . . . . . . 11 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ (⊥‘𝐵) 𝐶 𝐶))
48 cmbr3 31590 . . . . . . . . . . . 12 (((⊥‘𝐵) ∈ C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
4928, 48sylan 580 . . . . . . . . . . 11 ((𝐵C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5047, 49bitrd 279 . . . . . . . . . 10 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5150biimpa 476 . . . . . . . . 9 (((𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
52513adantl1 1167 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5352adantrl 716 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5446, 53eqtr3d 2770 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ (𝐵 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5554ineq1d 4168 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
56 inass 4177 . . . . . . . . 9 (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
57 in12 4178 . . . . . . . . . . . 12 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
58 inass 4177 . . . . . . . . . . . 12 ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
5957, 58eqtr4i 2759 . . . . . . . . . . 11 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶)))
60 chocin 31477 . . . . . . . . . . . 12 ((𝐴𝐶) ∈ C → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
612, 60syl 17 . . . . . . . . . . 11 ((𝐴C𝐶C ) → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
6259, 61eqtrid 2780 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
6362ineq2d 4169 . . . . . . . . 9 ((𝐴C𝐶C ) → ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))) = ((⊥‘𝐵) ∩ 0))
6456, 63eqtrid 2780 . . . . . . . 8 ((𝐴C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
65643adant2 1131 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
66 chm0 31473 . . . . . . . . 9 ((⊥‘𝐵) ∈ C → ((⊥‘𝐵) ∩ 0) = 0)
6728, 66syl 17 . . . . . . . 8 (𝐵C → ((⊥‘𝐵) ∩ 0) = 0)
68673ad2ant2 1134 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ 0) = 0)
6965, 68eqtrd 2768 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7069adantr 480 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7155, 70eqtrd 2768 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7241, 71eqtrd 2768 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)
73 pjoml 31418 . . 3 (((((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ) ∧ (((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)) ∧ ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7413, 15, 72, 73syl12anc 836 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7574eqcomd 2739 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cin 3897  wss 3898   class class class wbr 5093  cfv 6486  (class class class)co 7352   S csh 30910   C cch 30911  cort 30912   chj 30915  0c0h 30917   𝐶 ccm 30918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093  ax-hilex 30981  ax-hfvadd 30982  ax-hvcom 30983  ax-hvass 30984  ax-hv0cl 30985  ax-hvaddid 30986  ax-hfvmul 30987  ax-hvmulid 30988  ax-hvmulass 30989  ax-hvdistr1 30990  ax-hvdistr2 30991  ax-hvmul0 30992  ax-hfi 31061  ax-his1 31064  ax-his2 31065  ax-his3 31066  ax-his4 31067  ax-hcompl 31184
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-cn 23143  df-cnp 23144  df-lm 23145  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cfil 25183  df-cau 25184  df-cmet 25185  df-grpo 30475  df-gid 30476  df-ginv 30477  df-gdiv 30478  df-ablo 30527  df-vc 30541  df-nv 30574  df-va 30577  df-ba 30578  df-sm 30579  df-0v 30580  df-vs 30581  df-nmcv 30582  df-ims 30583  df-dip 30683  df-ssp 30704  df-ph 30795  df-cbn 30845  df-hnorm 30950  df-hba 30951  df-hvsub 30953  df-hlim 30954  df-hcau 30955  df-sh 31189  df-ch 31203  df-oc 31234  df-ch0 31235  df-shs 31290  df-chj 31292  df-cm 31565
This theorem is referenced by:  fh2i  31604  atordi  32366  chirredlem2  32373
  Copyright terms: Public domain W3C validator