Proof of Theorem fressupp
Step | Hyp | Ref
| Expression |
1 | | funrel 6480 |
. . . . 5
⊢ (Fun
𝐹 → Rel 𝐹) |
2 | 1 | 3ad2ant1 1133 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → Rel 𝐹) |
3 | | suppssdm 8024 |
. . . . 5
⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
4 | | undif 4421 |
. . . . . . 7
⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹) |
5 | 4 | biimpi 215 |
. . . . . 6
⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 → ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹) |
6 | 5 | eqcomd 2742 |
. . . . 5
⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) |
7 | 3, 6 | mp1i 13 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) |
8 | | disjdif 4411 |
. . . . 5
⊢ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅ |
9 | 8 | a1i 11 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅) |
10 | | reldisjun 30991 |
. . . 4
⊢ ((Rel
𝐹 ∧ dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ∧ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))) |
11 | 2, 7, 9, 10 | syl3anc 1371 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))) |
12 | 11 | difeq1d 4062 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))) |
13 | | resss 5928 |
. . . . 5
⊢ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹 |
14 | | sseqin2 4155 |
. . . . 5
⊢ ((𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹 ↔ (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) |
15 | 13, 14 | mpbi 229 |
. . . 4
⊢ (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
16 | | suppiniseg 31069 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) |
17 | 16 | reseq2d 5903 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
18 | | cnvrescnv 6113 |
. . . . . . 7
⊢ ◡(◡𝐹 ↾ {𝑍}) = (𝐹 ∩ (V × {𝑍})) |
19 | | funcnvres2 6543 |
. . . . . . 7
⊢ (Fun
𝐹 → ◡(◡𝐹 ↾ {𝑍}) = (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
20 | 18, 19 | eqtr3id 2790 |
. . . . . 6
⊢ (Fun
𝐹 → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
21 | 20 | 3ad2ant1 1133 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
22 | 17, 21 | eqtr4d 2779 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ∩ (V × {𝑍}))) |
23 | 15, 22 | eqtrid 2788 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍}))) |
24 | | indifbi 30917 |
. . 3
⊢ ((𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})) ↔ (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍}))) |
25 | 23, 24 | sylib 217 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍}))) |
26 | 8 | reseq2i 5900 |
. . . 4
⊢ (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ ∅) |
27 | | resindi 5919 |
. . . 4
⊢ (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) |
28 | | res0 5907 |
. . . 4
⊢ (𝐹 ↾ ∅) =
∅ |
29 | 26, 27, 28 | 3eqtr3i 2772 |
. . 3
⊢ ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅ |
30 | | undif5 30916 |
. . 3
⊢ (((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅ → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍))) |
31 | 29, 30 | mp1i 13 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍))) |
32 | 12, 25, 31 | 3eqtr3rd 2785 |
1
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍}))) |