Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fressupp Structured version   Visualization version   GIF version

Theorem fressupp 30696
Description: The restriction of a function to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
fressupp ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍})))

Proof of Theorem fressupp
StepHypRef Expression
1 funrel 6375 . . . . 5 (Fun 𝐹 → Rel 𝐹)
213ad2ant1 1135 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → Rel 𝐹)
3 suppssdm 7897 . . . . 5 (𝐹 supp 𝑍) ⊆ dom 𝐹
4 undif 4382 . . . . . . 7 ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹)
54biimpi 219 . . . . . 6 ((𝐹 supp 𝑍) ⊆ dom 𝐹 → ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹)
65eqcomd 2742 . . . . 5 ((𝐹 supp 𝑍) ⊆ dom 𝐹 → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
73, 6mp1i 13 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
8 disjdif 4372 . . . . 5 ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅
98a1i 11 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅)
10 reldisjun 30615 . . . 4 ((Rel 𝐹 ∧ dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ∧ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
112, 7, 9, 10syl3anc 1373 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
1211difeq1d 4022 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
13 resss 5861 . . . . 5 (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹
14 sseqin2 4116 . . . . 5 ((𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹 ↔ (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
1513, 14mpbi 233 . . . 4 (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
16 suppiniseg 30694 . . . . . 6 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
1716reseq2d 5836 . . . . 5 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ↾ (𝐹 “ {𝑍})))
18 cnvrescnv 6038 . . . . . . 7 (𝐹 ↾ {𝑍}) = (𝐹 ∩ (V × {𝑍}))
19 funcnvres2 6438 . . . . . . 7 (Fun 𝐹(𝐹 ↾ {𝑍}) = (𝐹 ↾ (𝐹 “ {𝑍})))
2018, 19eqtr3id 2785 . . . . . 6 (Fun 𝐹 → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (𝐹 “ {𝑍})))
21203ad2ant1 1135 . . . . 5 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (𝐹 “ {𝑍})))
2217, 21eqtr4d 2774 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ∩ (V × {𝑍})))
2315, 22syl5eq 2783 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})))
24 indifbi 30541 . . 3 ((𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})) ↔ (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍})))
2523, 24sylib 221 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍})))
268reseq2i 5833 . . . 4 (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ ∅)
27 resindi 5852 . . . 4 (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
28 res0 5840 . . . 4 (𝐹 ↾ ∅) = ∅
2926, 27, 283eqtr3i 2767 . . 3 ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅
30 undif5 30540 . . 3 (((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅ → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍)))
3129, 30mp1i 13 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍)))
3212, 25, 313eqtr3rd 2780 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2112  Vcvv 3398  cdif 3850  cun 3851  cin 3852  wss 3853  c0 4223  {csn 4527   × cxp 5534  ccnv 5535  dom cdm 5536  cres 5538  cima 5539  Rel wrel 5541  Fun wfun 6352  (class class class)co 7191   supp csupp 7881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-supp 7882
This theorem is referenced by:  gsumhashmul  30989
  Copyright terms: Public domain W3C validator