Proof of Theorem fressupp
| Step | Hyp | Ref
| Expression |
| 1 | | funrel 6558 |
. . . . 5
⊢ (Fun
𝐹 → Rel 𝐹) |
| 2 | 1 | 3ad2ant1 1133 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → Rel 𝐹) |
| 3 | | suppssdm 8181 |
. . . . 5
⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| 4 | | undif 4462 |
. . . . . . 7
⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹) |
| 5 | 4 | biimpi 216 |
. . . . . 6
⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 → ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹) |
| 6 | 5 | eqcomd 2742 |
. . . . 5
⊢ ((𝐹 supp 𝑍) ⊆ dom 𝐹 → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) |
| 7 | 3, 6 | mp1i 13 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) |
| 8 | | disjdif 4452 |
. . . . 5
⊢ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅ |
| 9 | 8 | a1i 11 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅) |
| 10 | | reldisjun 6024 |
. . . 4
⊢ ((Rel
𝐹 ∧ dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ∧ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))) |
| 11 | 2, 7, 9, 10 | syl3anc 1373 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))) |
| 12 | 11 | difeq1d 4105 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))) |
| 13 | | resss 5993 |
. . . . 5
⊢ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹 |
| 14 | | sseqin2 4203 |
. . . . 5
⊢ ((𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹 ↔ (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) |
| 15 | 13, 14 | mpbi 230 |
. . . 4
⊢ (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
| 16 | | suppiniseg 32668 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) |
| 17 | 16 | reseq2d 5971 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 18 | | cnvrescnv 6189 |
. . . . . . 7
⊢ ◡(◡𝐹 ↾ {𝑍}) = (𝐹 ∩ (V × {𝑍})) |
| 19 | | funcnvres2 6621 |
. . . . . . 7
⊢ (Fun
𝐹 → ◡(◡𝐹 ↾ {𝑍}) = (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 20 | 18, 19 | eqtr3id 2785 |
. . . . . 6
⊢ (Fun
𝐹 → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 21 | 20 | 3ad2ant1 1133 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 22 | 17, 21 | eqtr4d 2774 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ∩ (V × {𝑍}))) |
| 23 | 15, 22 | eqtrid 2783 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍}))) |
| 24 | | indifbi 32506 |
. . 3
⊢ ((𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})) ↔ (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍}))) |
| 25 | 23, 24 | sylib 218 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍}))) |
| 26 | 8 | reseq2i 5968 |
. . . 4
⊢ (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ ∅) |
| 27 | | resindi 5987 |
. . . 4
⊢ (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) |
| 28 | | res0 5975 |
. . . 4
⊢ (𝐹 ↾ ∅) =
∅ |
| 29 | 26, 27, 28 | 3eqtr3i 2767 |
. . 3
⊢ ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅ |
| 30 | | undif5 4465 |
. . 3
⊢ (((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅ → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍))) |
| 31 | 29, 30 | mp1i 13 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍))) |
| 32 | 12, 25, 31 | 3eqtr3rd 2780 |
1
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍}))) |