Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fressupp Structured version   Visualization version   GIF version

Theorem fressupp 31071
Description: The restriction of a function to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
fressupp ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍})))

Proof of Theorem fressupp
StepHypRef Expression
1 funrel 6480 . . . . 5 (Fun 𝐹 → Rel 𝐹)
213ad2ant1 1133 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → Rel 𝐹)
3 suppssdm 8024 . . . . 5 (𝐹 supp 𝑍) ⊆ dom 𝐹
4 undif 4421 . . . . . . 7 ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹)
54biimpi 215 . . . . . 6 ((𝐹 supp 𝑍) ⊆ dom 𝐹 → ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹)
65eqcomd 2742 . . . . 5 ((𝐹 supp 𝑍) ⊆ dom 𝐹 → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
73, 6mp1i 13 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
8 disjdif 4411 . . . . 5 ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅
98a1i 11 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅)
10 reldisjun 30991 . . . 4 ((Rel 𝐹 ∧ dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ∧ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
112, 7, 9, 10syl3anc 1371 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
1211difeq1d 4062 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
13 resss 5928 . . . . 5 (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹
14 sseqin2 4155 . . . . 5 ((𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹 ↔ (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
1513, 14mpbi 229 . . . 4 (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
16 suppiniseg 31069 . . . . . 6 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
1716reseq2d 5903 . . . . 5 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ↾ (𝐹 “ {𝑍})))
18 cnvrescnv 6113 . . . . . . 7 (𝐹 ↾ {𝑍}) = (𝐹 ∩ (V × {𝑍}))
19 funcnvres2 6543 . . . . . . 7 (Fun 𝐹(𝐹 ↾ {𝑍}) = (𝐹 ↾ (𝐹 “ {𝑍})))
2018, 19eqtr3id 2790 . . . . . 6 (Fun 𝐹 → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (𝐹 “ {𝑍})))
21203ad2ant1 1133 . . . . 5 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (𝐹 “ {𝑍})))
2217, 21eqtr4d 2779 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ∩ (V × {𝑍})))
2315, 22eqtrid 2788 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})))
24 indifbi 30917 . . 3 ((𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})) ↔ (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍})))
2523, 24sylib 217 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍})))
268reseq2i 5900 . . . 4 (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ ∅)
27 resindi 5919 . . . 4 (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
28 res0 5907 . . . 4 (𝐹 ↾ ∅) = ∅
2926, 27, 283eqtr3i 2772 . . 3 ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅
30 undif5 30916 . . 3 (((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅ → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍)))
3129, 30mp1i 13 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍)))
3212, 25, 313eqtr3rd 2785 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2104  Vcvv 3437  cdif 3889  cun 3890  cin 3891  wss 3892  c0 4262  {csn 4565   × cxp 5598  ccnv 5599  dom cdm 5600  cres 5602  cima 5603  Rel wrel 5605  Fun wfun 6452  (class class class)co 7307   supp csupp 8008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-supp 8009
This theorem is referenced by:  gsumhashmul  31365
  Copyright terms: Public domain W3C validator