Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fressupp Structured version   Visualization version   GIF version

Theorem fressupp 32661
Description: The restriction of a function to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
fressupp ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍})))

Proof of Theorem fressupp
StepHypRef Expression
1 funrel 6517 . . . . 5 (Fun 𝐹 → Rel 𝐹)
213ad2ant1 1133 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → Rel 𝐹)
3 suppssdm 8133 . . . . 5 (𝐹 supp 𝑍) ⊆ dom 𝐹
4 undif 4441 . . . . . . 7 ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹)
54biimpi 216 . . . . . 6 ((𝐹 supp 𝑍) ⊆ dom 𝐹 → ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹)
65eqcomd 2735 . . . . 5 ((𝐹 supp 𝑍) ⊆ dom 𝐹 → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
73, 6mp1i 13 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
8 disjdif 4431 . . . . 5 ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅
98a1i 11 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅)
10 reldisjun 5992 . . . 4 ((Rel 𝐹 ∧ dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ∧ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
112, 7, 9, 10syl3anc 1373 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
1211difeq1d 4084 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
13 resss 5961 . . . . 5 (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹
14 sseqin2 4182 . . . . 5 ((𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹 ↔ (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
1513, 14mpbi 230 . . . 4 (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
16 suppiniseg 32659 . . . . . 6 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
1716reseq2d 5939 . . . . 5 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ↾ (𝐹 “ {𝑍})))
18 cnvrescnv 6156 . . . . . . 7 (𝐹 ↾ {𝑍}) = (𝐹 ∩ (V × {𝑍}))
19 funcnvres2 6580 . . . . . . 7 (Fun 𝐹(𝐹 ↾ {𝑍}) = (𝐹 ↾ (𝐹 “ {𝑍})))
2018, 19eqtr3id 2778 . . . . . 6 (Fun 𝐹 → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (𝐹 “ {𝑍})))
21203ad2ant1 1133 . . . . 5 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (𝐹 “ {𝑍})))
2217, 21eqtr4d 2767 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ∩ (V × {𝑍})))
2315, 22eqtrid 2776 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})))
24 indifbi 32499 . . 3 ((𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})) ↔ (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍})))
2523, 24sylib 218 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍})))
268reseq2i 5936 . . . 4 (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ ∅)
27 resindi 5955 . . . 4 (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
28 res0 5943 . . . 4 (𝐹 ↾ ∅) = ∅
2926, 27, 283eqtr3i 2760 . . 3 ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅
30 undif5 4444 . . 3 (((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅ → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍)))
3129, 30mp1i 13 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍)))
3212, 25, 313eqtr3rd 2773 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585   × cxp 5629  ccnv 5630  dom cdm 5631  cres 5633  cima 5634  Rel wrel 5636  Fun wfun 6493  (class class class)co 7369   supp csupp 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117
This theorem is referenced by:  gsumhashmul  33044
  Copyright terms: Public domain W3C validator