Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fressupp Structured version   Visualization version   GIF version

Theorem fressupp 31001
Description: The restriction of a function to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
fressupp ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍})))

Proof of Theorem fressupp
StepHypRef Expression
1 funrel 6447 . . . . 5 (Fun 𝐹 → Rel 𝐹)
213ad2ant1 1131 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → Rel 𝐹)
3 suppssdm 7977 . . . . 5 (𝐹 supp 𝑍) ⊆ dom 𝐹
4 undif 4420 . . . . . . 7 ((𝐹 supp 𝑍) ⊆ dom 𝐹 ↔ ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹)
54biimpi 215 . . . . . 6 ((𝐹 supp 𝑍) ⊆ dom 𝐹 → ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = dom 𝐹)
65eqcomd 2745 . . . . 5 ((𝐹 supp 𝑍) ⊆ dom 𝐹 → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
73, 6mp1i 13 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
8 disjdif 4410 . . . . 5 ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅
98a1i 11 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅)
10 reldisjun 30921 . . . 4 ((Rel 𝐹 ∧ dom 𝐹 = ((𝐹 supp 𝑍) ∪ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ∧ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = ∅) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
112, 7, 9, 10syl3anc 1369 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → 𝐹 = ((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
1211difeq1d 4060 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))))
13 resss 5913 . . . . 5 (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹
14 sseqin2 4154 . . . . 5 ((𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) ⊆ 𝐹 ↔ (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
1513, 14mpbi 229 . . . 4 (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
16 suppiniseg 30999 . . . . . 6 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
1716reseq2d 5888 . . . . 5 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ↾ (𝐹 “ {𝑍})))
18 cnvrescnv 6095 . . . . . . 7 (𝐹 ↾ {𝑍}) = (𝐹 ∩ (V × {𝑍}))
19 funcnvres2 6510 . . . . . . 7 (Fun 𝐹(𝐹 ↾ {𝑍}) = (𝐹 ↾ (𝐹 “ {𝑍})))
2018, 19eqtr3id 2793 . . . . . 6 (Fun 𝐹 → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (𝐹 “ {𝑍})))
21203ad2ant1 1131 . . . . 5 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∩ (V × {𝑍})) = (𝐹 ↾ (𝐹 “ {𝑍})))
2217, 21eqtr4d 2782 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))) = (𝐹 ∩ (V × {𝑍})))
2315, 22eqtrid 2791 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})))
24 indifbi 30847 . . 3 ((𝐹 ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∩ (V × {𝑍})) ↔ (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍})))
2523, 24sylib 217 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ∖ (V × {𝑍})))
268reseq2i 5885 . . . 4 (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ ∅)
27 resindi 5904 . . . 4 (𝐹 ↾ ((𝐹 supp 𝑍) ∩ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍))))
28 res0 5892 . . . 4 (𝐹 ↾ ∅) = ∅
2926, 27, 283eqtr3i 2775 . . 3 ((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅
30 undif5 30846 . . 3 (((𝐹 ↾ (𝐹 supp 𝑍)) ∩ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = ∅ → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍)))
3129, 30mp1i 13 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (((𝐹 ↾ (𝐹 supp 𝑍)) ∪ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) ∖ (𝐹 ↾ (dom 𝐹 ∖ (𝐹 supp 𝑍)))) = (𝐹 ↾ (𝐹 supp 𝑍)))
3212, 25, 313eqtr3rd 2788 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430  cdif 3888  cun 3889  cin 3890  wss 3891  c0 4261  {csn 4566   × cxp 5586  ccnv 5587  dom cdm 5588  cres 5590  cima 5591  Rel wrel 5593  Fun wfun 6424  (class class class)co 7268   supp csupp 7961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-supp 7962
This theorem is referenced by:  gsumhashmul  31295
  Copyright terms: Public domain W3C validator