Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rcompleq | Structured version Visualization version GIF version |
Description: Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 4078. (Contributed by RP, 10-Jun-2021.) |
Ref | Expression |
---|---|
rcompleq | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵)) | |
2 | sscon34b 4225 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶) → (𝐵 ⊆ 𝐴 ↔ (𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵))) | |
3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊆ 𝐴 ↔ (𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵))) |
4 | sscon34b 4225 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | |
5 | 3, 4 | anbi12d 630 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ↔ ((𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵) ∧ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)))) |
6 | 1, 5 | syl5bb 282 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ ((𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵) ∧ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)))) |
7 | eqss 3932 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
8 | eqss 3932 | . 2 ⊢ ((𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) ↔ ((𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵) ∧ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | |
9 | 6, 7, 8 | 3bitr4g 313 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∖ cdif 3880 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: indifbi 30769 ntrclsfveq1 41559 ntrclsfveq2 41560 ntrclskb 41568 ntrclsk13 41570 ntrclsk4 41571 |
Copyright terms: Public domain | W3C validator |