MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rcompleq Structured version   Visualization version   GIF version

Theorem rcompleq 4285
Description: Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 4132. (Contributed by RP, 10-Jun-2021.)
Assertion
Ref Expression
rcompleq ((𝐴𝐶𝐵𝐶) → (𝐴 = 𝐵 ↔ (𝐶𝐴) = (𝐶𝐵)))

Proof of Theorem rcompleq
StepHypRef Expression
1 ancom 460 . . 3 ((𝐴𝐵𝐵𝐴) ↔ (𝐵𝐴𝐴𝐵))
2 sscon34b 4284 . . . . 5 ((𝐵𝐶𝐴𝐶) → (𝐵𝐴 ↔ (𝐶𝐴) ⊆ (𝐶𝐵)))
32ancoms 458 . . . 4 ((𝐴𝐶𝐵𝐶) → (𝐵𝐴 ↔ (𝐶𝐴) ⊆ (𝐶𝐵)))
4 sscon34b 4284 . . . 4 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵 ↔ (𝐶𝐵) ⊆ (𝐶𝐴)))
53, 4anbi12d 632 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐵𝐴𝐴𝐵) ↔ ((𝐶𝐴) ⊆ (𝐶𝐵) ∧ (𝐶𝐵) ⊆ (𝐶𝐴))))
61, 5bitrid 283 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐵𝐵𝐴) ↔ ((𝐶𝐴) ⊆ (𝐶𝐵) ∧ (𝐶𝐵) ⊆ (𝐶𝐴))))
7 eqss 3979 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
8 eqss 3979 . 2 ((𝐶𝐴) = (𝐶𝐵) ↔ ((𝐶𝐴) ⊆ (𝐶𝐵) ∧ (𝐶𝐵) ⊆ (𝐶𝐴)))
96, 7, 83bitr4g 314 1 ((𝐴𝐶𝐵𝐶) → (𝐴 = 𝐵 ↔ (𝐶𝐴) = (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  cdif 3928  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-in 3938  df-ss 3948
This theorem is referenced by:  indifbi  32506  ntrclsfveq1  44051  ntrclsfveq2  44052  ntrclskb  44060  ntrclsk13  44062  ntrclsk4  44063
  Copyright terms: Public domain W3C validator