| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rcompleq | Structured version Visualization version GIF version | ||
| Description: Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 4103. (Contributed by RP, 10-Jun-2021.) |
| Ref | Expression |
|---|---|
| rcompleq | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵)) | |
| 2 | sscon34b 4255 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶) → (𝐵 ⊆ 𝐴 ↔ (𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵))) | |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊆ 𝐴 ↔ (𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵))) |
| 4 | sscon34b 4255 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | |
| 5 | 3, 4 | anbi12d 632 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ↔ ((𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵) ∧ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)))) |
| 6 | 1, 5 | bitrid 283 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ ((𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵) ∧ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)))) |
| 7 | eqss 3951 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 8 | eqss 3951 | . 2 ⊢ ((𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) ↔ ((𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵) ∧ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∖ cdif 3900 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-in 3910 df-ss 3920 |
| This theorem is referenced by: indifbi 32469 ntrclsfveq1 44053 ntrclsfveq2 44054 ntrclskb 44062 ntrclsk13 44064 ntrclsk4 44065 |
| Copyright terms: Public domain | W3C validator |