![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diffib | Structured version Visualization version GIF version |
Description: Case where diffi 9183 is a biconditional. (Contributed by Thierry Arnoux, 27-Jun-2024.) |
Ref | Expression |
---|---|
diffib | ⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin ↔ (𝐴 ∖ 𝐵) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diffi 9183 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | |
2 | 1 | adantl 480 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 ∖ 𝐵) ∈ Fin) |
3 | difinf 9320 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) | |
4 | 3 | ancoms 457 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) |
5 | 4 | ex 411 | . . . 4 ⊢ (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → ¬ (𝐴 ∖ 𝐵) ∈ Fin)) |
6 | 5 | con4d 115 | . . 3 ⊢ (𝐵 ∈ Fin → ((𝐴 ∖ 𝐵) ∈ Fin → 𝐴 ∈ Fin)) |
7 | 6 | imp 405 | . 2 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin) → 𝐴 ∈ Fin) |
8 | 2, 7 | impbida 797 | 1 ⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin ↔ (𝐴 ∖ 𝐵) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2104 ∖ cdif 3946 Fincfn 8943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7860 df-1o 8470 df-en 8944 df-fin 8947 |
This theorem is referenced by: fsupprnfi 32179 |
Copyright terms: Public domain | W3C validator |