Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diffib Structured version   Visualization version   GIF version

Theorem diffib 32024
Description: Case where diffi 9183 is a biconditional. (Contributed by Thierry Arnoux, 27-Jun-2024.)
Assertion
Ref Expression
diffib (𝐵 ∈ Fin → (𝐴 ∈ Fin ↔ (𝐴𝐵) ∈ Fin))

Proof of Theorem diffib
StepHypRef Expression
1 diffi 9183 . . 3 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
21adantl 480 . 2 ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴𝐵) ∈ Fin)
3 difinf 9320 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴𝐵) ∈ Fin)
43ancoms 457 . . . . 5 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴𝐵) ∈ Fin)
54ex 411 . . . 4 (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → ¬ (𝐴𝐵) ∈ Fin))
65con4d 115 . . 3 (𝐵 ∈ Fin → ((𝐴𝐵) ∈ Fin → 𝐴 ∈ Fin))
76imp 405 . 2 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → 𝐴 ∈ Fin)
82, 7impbida 797 1 (𝐵 ∈ Fin → (𝐴 ∈ Fin ↔ (𝐴𝐵) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2104  cdif 3946  Fincfn 8943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7860  df-1o 8470  df-en 8944  df-fin 8947
This theorem is referenced by:  fsupprnfi  32179
  Copyright terms: Public domain W3C validator