Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inex3 Structured version   Visualization version   GIF version

Theorem inex3 38320
Description: Sufficient condition for the intersection relation to be a set. (Contributed by Peter Mazsa, 24-Nov-2019.)
Assertion
Ref Expression
inex3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem inex3
StepHypRef Expression
1 inex1g 5325 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
2 inex2g 5326 . 2 (𝐵𝑊 → (𝐴𝐵) ∈ V)
31, 2jaoi 857 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wcel 2106  Vcvv 3478  cin 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-in 3970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator