![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inex3 | Structured version Visualization version GIF version |
Description: Sufficient condition for the intersection relation to be a set. (Contributed by Peter Mazsa, 24-Nov-2019.) |
Ref | Expression |
---|---|
inex3 | ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1g 5320 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
2 | inex2g 5321 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∩ 𝐵) ∈ V) | |
3 | 1, 2 | jaoi 856 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∈ wcel 2107 Vcvv 3475 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3956 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |