Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inex3 | Structured version Visualization version GIF version |
Description: Sufficient condition for the intersection relation to be a set. (Contributed by Peter Mazsa, 24-Nov-2019.) |
Ref | Expression |
---|---|
inex3 | ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1g 5197 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
2 | inex2g 5198 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∩ 𝐵) ∈ V) | |
3 | 1, 2 | jaoi 856 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∈ wcel 2114 Vcvv 3400 ∩ cin 3852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 ax-sep 5177 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-rab 3063 df-v 3402 df-in 3860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |