Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inex3 Structured version   Visualization version   GIF version

Theorem inex3 37207
Description: Sufficient condition for the intersection relation to be a set. (Contributed by Peter Mazsa, 24-Nov-2019.)
Assertion
Ref Expression
inex3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem inex3
StepHypRef Expression
1 inex1g 5320 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
2 inex2g 5321 . 2 (𝐵𝑊 → (𝐴𝐵) ∈ V)
31, 2jaoi 856 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  wcel 2107  Vcvv 3475  cin 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-in 3956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator