Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpex Structured version   Visualization version   GIF version

Theorem inxpex 38321
Description: Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019.)
Assertion
Ref Expression
inxpex ((𝑅𝑊 ∨ (𝐴𝑈𝐵𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)

Proof of Theorem inxpex
StepHypRef Expression
1 inex1g 5274 . 2 (𝑅𝑊 → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
2 xpexg 7726 . . 3 ((𝐴𝑈𝐵𝑉) → (𝐴 × 𝐵) ∈ V)
3 inex2g 5275 . . 3 ((𝐴 × 𝐵) ∈ V → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
42, 3syl 17 . 2 ((𝐴𝑈𝐵𝑉) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
51, 4jaoi 857 1 ((𝑅𝑊 ∨ (𝐴𝑈𝐵𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2109  Vcvv 3447  cin 3913   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  xrninxpex  38380
  Copyright terms: Public domain W3C validator