Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpex Structured version   Visualization version   GIF version

Theorem inxpex 37672
Description: Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019.)
Assertion
Ref Expression
inxpex ((𝑅𝑊 ∨ (𝐴𝑈𝐵𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)

Proof of Theorem inxpex
StepHypRef Expression
1 inex1g 5319 . 2 (𝑅𝑊 → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
2 xpexg 7741 . . 3 ((𝐴𝑈𝐵𝑉) → (𝐴 × 𝐵) ∈ V)
3 inex2g 5320 . . 3 ((𝐴 × 𝐵) ∈ V → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
42, 3syl 17 . 2 ((𝐴𝑈𝐵𝑉) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
51, 4jaoi 854 1 ((𝑅𝑊 ∨ (𝐴𝑈𝐵𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  wcel 2105  Vcvv 3473  cin 3947   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-opab 5211  df-xp 5682  df-rel 5683
This theorem is referenced by:  xrninxpex  37728
  Copyright terms: Public domain W3C validator