| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpex | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019.) |
| Ref | Expression |
|---|---|
| inxpex | ⊢ ((𝑅 ∈ 𝑊 ∨ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1g 5259 | . 2 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) | |
| 2 | xpexg 7689 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → (𝐴 × 𝐵) ∈ V) | |
| 3 | inex2g 5260 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) |
| 5 | 1, 4 | jaoi 857 | 1 ⊢ ((𝑅 ∈ 𝑊 ∨ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: xrninxpex 38461 |
| Copyright terms: Public domain | W3C validator |