Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpex | Structured version Visualization version GIF version |
Description: Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019.) |
Ref | Expression |
---|---|
inxpex | ⊢ ((𝑅 ∈ 𝑊 ∨ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1g 5243 | . 2 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) | |
2 | xpexg 7600 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → (𝐴 × 𝐵) ∈ V) | |
3 | inex2g 5244 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) |
5 | 1, 4 | jaoi 854 | 1 ⊢ ((𝑅 ∈ 𝑊 ∨ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: xrninxpex 36520 |
Copyright terms: Public domain | W3C validator |