Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpex Structured version   Visualization version   GIF version

Theorem inxpex 38366
Description: Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019.)
Assertion
Ref Expression
inxpex ((𝑅𝑊 ∨ (𝐴𝑈𝐵𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)

Proof of Theorem inxpex
StepHypRef Expression
1 inex1g 5257 . 2 (𝑅𝑊 → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
2 xpexg 7683 . . 3 ((𝐴𝑈𝐵𝑉) → (𝐴 × 𝐵) ∈ V)
3 inex2g 5258 . . 3 ((𝐴 × 𝐵) ∈ V → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
42, 3syl 17 . 2 ((𝐴𝑈𝐵𝑉) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
51, 4jaoi 857 1 ((𝑅𝑊 ∨ (𝐴𝑈𝐵𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2111  Vcvv 3436  cin 3901   × cxp 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-opab 5154  df-xp 5622  df-rel 5623
This theorem is referenced by:  xrninxpex  38425
  Copyright terms: Public domain W3C validator