![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpex | Structured version Visualization version GIF version |
Description: Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019.) |
Ref | Expression |
---|---|
inxpex | ⊢ ((𝑅 ∈ 𝑊 ∨ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1g 5114 | . 2 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) | |
2 | xpexg 7330 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → (𝐴 × 𝐵) ∈ V) | |
3 | inex2g 5115 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) |
5 | 1, 4 | jaoi 852 | 1 ⊢ ((𝑅 ∈ 𝑊 ∨ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 842 ∈ wcel 2081 Vcvv 3437 ∩ cin 3858 × cxp 5441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-opab 5025 df-xp 5449 df-rel 5450 |
This theorem is referenced by: xrninxpex 35173 |
Copyright terms: Public domain | W3C validator |