MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inex2g Structured version   Visualization version   GIF version

Theorem inex2g 5320
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5319. (Contributed by Peter Mazsa, 19-Dec-2018.)
Assertion
Ref Expression
inex2g (𝐴𝑉 → (𝐵𝐴) ∈ V)

Proof of Theorem inex2g
StepHypRef Expression
1 incom 4201 . 2 (𝐵𝐴) = (𝐴𝐵)
2 inex1g 5319 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2eqeltrid 2837 1 (𝐴𝑉 → (𝐵𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474  cin 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-in 3955
This theorem is referenced by:  satefvfmla1  34411  inex3  37202  inxpex  37203  dfcnvrefrels2  37393  dfcnvrefrels3  37394  iunrelexp0  42443
  Copyright terms: Public domain W3C validator