| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex2g | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5274. (Contributed by Peter Mazsa, 19-Dec-2018.) |
| Ref | Expression |
|---|---|
| inex2g | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4172 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inex1g 5274 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
| 3 | 1, 2 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 |
| This theorem is referenced by: satefvfmla1 35412 inex3 38320 inxpex 38321 dfcnvrefrels2 38519 dfcnvrefrels3 38520 iunrelexp0 43691 |
| Copyright terms: Public domain | W3C validator |