MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inex2g Structured version   Visualization version   GIF version

Theorem inex2g 5311
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5310. (Contributed by Peter Mazsa, 19-Dec-2018.)
Assertion
Ref Expression
inex2g (𝐴𝑉 → (𝐵𝐴) ∈ V)

Proof of Theorem inex2g
StepHypRef Expression
1 incom 4194 . 2 (𝐵𝐴) = (𝐴𝐵)
2 inex1g 5310 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2eqeltrid 2829 1 (𝐴𝑉 → (𝐵𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3466  cin 3940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-in 3948
This theorem is referenced by:  satefvfmla1  34934  inex3  37711  inxpex  37712  dfcnvrefrels2  37902  dfcnvrefrels3  37903  iunrelexp0  43003
  Copyright terms: Public domain W3C validator