MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inex2g Structured version   Visualization version   GIF version

Theorem inex2g 5257
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5256. (Contributed by Peter Mazsa, 19-Dec-2018.)
Assertion
Ref Expression
inex2g (𝐴𝑉 → (𝐵𝐴) ∈ V)

Proof of Theorem inex2g
StepHypRef Expression
1 incom 4145 . 2 (𝐵𝐴) = (𝐴𝐵)
2 inex1g 5256 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2eqeltrid 2842 1 (𝐴𝑉 → (𝐵𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  Vcvv 3441  cin 3895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5236
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3443  df-in 3903
This theorem is referenced by:  satefvfmla1  33493  inex3  36563  inxpex  36564  dfcnvrefrels2  36754  dfcnvrefrels3  36755  iunrelexp0  41538
  Copyright terms: Public domain W3C validator