Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inex2g | Structured version Visualization version GIF version |
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5256. (Contributed by Peter Mazsa, 19-Dec-2018.) |
Ref | Expression |
---|---|
inex2g | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4145 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex1g 5256 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
3 | 1, 2 | eqeltrid 2842 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3441 ∩ cin 3895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5236 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-in 3903 |
This theorem is referenced by: satefvfmla1 33493 inex3 36563 inxpex 36564 dfcnvrefrels2 36754 dfcnvrefrels3 36755 iunrelexp0 41538 |
Copyright terms: Public domain | W3C validator |