MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inex2g Structured version   Visualization version   GIF version

Theorem inex2g 5247
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5246. (Contributed by Peter Mazsa, 19-Dec-2018.)
Assertion
Ref Expression
inex2g (𝐴𝑉 → (𝐵𝐴) ∈ V)

Proof of Theorem inex2g
StepHypRef Expression
1 incom 4139 . 2 (𝐵𝐴) = (𝐴𝐵)
2 inex1g 5246 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2eqeltrid 2844 1 (𝐴𝑉 → (𝐵𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3430  cin 3890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-in 3898
This theorem is referenced by:  satefvfmla1  33366  inex3  36452  inxpex  36453  dfcnvrefrels2  36623  dfcnvrefrels3  36624
  Copyright terms: Public domain W3C validator