![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex2g | Structured version Visualization version GIF version |
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5337. (Contributed by Peter Mazsa, 19-Dec-2018.) |
Ref | Expression |
---|---|
inex2g | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4230 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex1g 5337 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
3 | 1, 2 | eqeltrid 2848 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 |
This theorem is referenced by: satefvfmla1 35393 inex3 38294 inxpex 38295 dfcnvrefrels2 38484 dfcnvrefrels3 38485 iunrelexp0 43664 |
Copyright terms: Public domain | W3C validator |