Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inex2g | Structured version Visualization version GIF version |
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5246. (Contributed by Peter Mazsa, 19-Dec-2018.) |
Ref | Expression |
---|---|
inex2g | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4139 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex1g 5246 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
3 | 1, 2 | eqeltrid 2844 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-in 3898 |
This theorem is referenced by: satefvfmla1 33366 inex3 36452 inxpex 36453 dfcnvrefrels2 36623 dfcnvrefrels3 36624 |
Copyright terms: Public domain | W3C validator |