MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inex2g Structured version   Visualization version   GIF version

Theorem inex2g 5256
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5255. (Contributed by Peter Mazsa, 19-Dec-2018.)
Assertion
Ref Expression
inex2g (𝐴𝑉 → (𝐵𝐴) ∈ V)

Proof of Theorem inex2g
StepHypRef Expression
1 incom 4156 . 2 (𝐵𝐴) = (𝐴𝐵)
2 inex1g 5255 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2eqeltrid 2835 1 (𝐴𝑉 → (𝐵𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904
This theorem is referenced by:  satefvfmla1  35469  inex3  38380  inxpex  38381  dfcnvrefrels2  38630  dfcnvrefrels3  38631  iunrelexp0  43805
  Copyright terms: Public domain W3C validator