![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex2g | Structured version Visualization version GIF version |
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g 5319. (Contributed by Peter Mazsa, 19-Dec-2018.) |
Ref | Expression |
---|---|
inex2g | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4201 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex1g 5319 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
3 | 1, 2 | eqeltrid 2837 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3474 ∩ cin 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3955 |
This theorem is referenced by: satefvfmla1 34411 inex3 37202 inxpex 37203 dfcnvrefrels2 37393 dfcnvrefrels3 37394 iunrelexp0 42443 |
Copyright terms: Public domain | W3C validator |