![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepima | Structured version Visualization version GIF version |
Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023.) |
Ref | Expression |
---|---|
cnvepima | ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepresex 37140 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
2 | uniqsALTV 37135 | . . 3 ⊢ ((◡ E ↾ 𝐴) ∈ V → ∪ (𝐴 / ◡ E ) = (◡ E “ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (𝐴 / ◡ E ) = (◡ E “ 𝐴)) |
4 | qsid 8772 | . . 3 ⊢ (𝐴 / ◡ E ) = 𝐴 | |
5 | 4 | unieqi 4919 | . 2 ⊢ ∪ (𝐴 / ◡ E ) = ∪ 𝐴 |
6 | 3, 5 | eqtr3di 2788 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∪ cuni 4906 E cep 5577 ◡ccnv 5673 ↾ cres 5676 “ cima 5677 / cqs 8697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-eprel 5578 df-xp 5680 df-rel 5681 df-cnv 5682 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-ec 8700 df-qs 8704 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |