Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepima Structured version   Visualization version   GIF version

Theorem cnvepima 38316
Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023.)
Assertion
Ref Expression
cnvepima (𝐴𝑉 → ( E “ 𝐴) = 𝐴)

Proof of Theorem cnvepima
StepHypRef Expression
1 cnvepresex 38313 . . 3 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
2 uniqsALTV 38308 . . 3 (( E ↾ 𝐴) ∈ V → (𝐴 / E ) = ( E “ 𝐴))
31, 2syl 17 . 2 (𝐴𝑉 (𝐴 / E ) = ( E “ 𝐴))
4 qsid 8819 . . 3 (𝐴 / E ) = 𝐴
54unieqi 4917 . 2 (𝐴 / E ) = 𝐴
63, 5eqtr3di 2791 1 (𝐴𝑉 → ( E “ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3479   cuni 4905   E cep 5581  ccnv 5682  cres 5685  cima 5686   / cqs 8740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-eprel 5582  df-xp 5689  df-rel 5690  df-cnv 5691  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-ec 8743  df-qs 8747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator