Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepima Structured version   Visualization version   GIF version

Theorem cnvepima 35126
Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023.)
Assertion
Ref Expression
cnvepima (𝐴𝑉 → ( E “ 𝐴) = 𝐴)

Proof of Theorem cnvepima
StepHypRef Expression
1 qsid 8213 . . 3 (𝐴 / E ) = 𝐴
21unieqi 4754 . 2 (𝐴 / E ) = 𝐴
3 cnvepresex 35123 . . 3 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
4 uniqsALTV 35118 . . 3 (( E ↾ 𝐴) ∈ V → (𝐴 / E ) = ( E “ 𝐴))
53, 4syl 17 . 2 (𝐴𝑉 (𝐴 / E ) = ( E “ 𝐴))
62, 5syl5reqr 2846 1 (𝐴𝑉 → ( E “ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2081  Vcvv 3437   cuni 4745   E cep 5352  ccnv 5442  cres 5445  cima 5446   / cqs 8138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-eprel 5353  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ec 8141  df-qs 8145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator