Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepima Structured version   Visualization version   GIF version

Theorem cnvepima 38373
Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023.)
Assertion
Ref Expression
cnvepima (𝐴𝑉 → ( E “ 𝐴) = 𝐴)

Proof of Theorem cnvepima
StepHypRef Expression
1 cnvepresex 38372 . . 3 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
2 uniqs 8698 . . 3 (( E ↾ 𝐴) ∈ V → (𝐴 / E ) = ( E “ 𝐴))
31, 2syl 17 . 2 (𝐴𝑉 (𝐴 / E ) = ( E “ 𝐴))
4 qsid 8705 . . 3 (𝐴 / E ) = 𝐴
54unieqi 4868 . 2 (𝐴 / E ) = 𝐴
63, 5eqtr3di 2781 1 (𝐴𝑉 → ( E “ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436   cuni 4856   E cep 5513  ccnv 5613  cres 5616  cima 5617   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624  df-qs 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator