![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepima | Structured version Visualization version GIF version |
Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023.) |
Ref | Expression |
---|---|
cnvepima | ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepresex 38282 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
2 | uniqsALTV 38277 | . . 3 ⊢ ((◡ E ↾ 𝐴) ∈ V → ∪ (𝐴 / ◡ E ) = (◡ E “ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (𝐴 / ◡ E ) = (◡ E “ 𝐴)) |
4 | qsid 8835 | . . 3 ⊢ (𝐴 / ◡ E ) = 𝐴 | |
5 | 4 | unieqi 4943 | . 2 ⊢ ∪ (𝐴 / ◡ E ) = ∪ 𝐴 |
6 | 3, 5 | eqtr3di 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 E cep 5598 ◡ccnv 5694 ↾ cres 5697 “ cima 5698 / cqs 8756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5701 df-rel 5702 df-cnv 5703 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-ec 8759 df-qs 8763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |