![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepima | Structured version Visualization version GIF version |
Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023.) |
Ref | Expression |
---|---|
cnvepima | ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepresex 38313 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
2 | uniqsALTV 38308 | . . 3 ⊢ ((◡ E ↾ 𝐴) ∈ V → ∪ (𝐴 / ◡ E ) = (◡ E “ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (𝐴 / ◡ E ) = (◡ E “ 𝐴)) |
4 | qsid 8819 | . . 3 ⊢ (𝐴 / ◡ E ) = 𝐴 | |
5 | 4 | unieqi 4917 | . 2 ⊢ ∪ (𝐴 / ◡ E ) = ∪ 𝐴 |
6 | 3, 5 | eqtr3di 2791 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3479 ∪ cuni 4905 E cep 5581 ◡ccnv 5682 ↾ cres 5685 “ cima 5686 / cqs 8740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-eprel 5582 df-xp 5689 df-rel 5690 df-cnv 5691 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-ec 8743 df-qs 8747 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |