Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepima Structured version   Visualization version   GIF version

Theorem cnvepima 37143
Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023.)
Assertion
Ref Expression
cnvepima (𝐴𝑉 → ( E “ 𝐴) = 𝐴)

Proof of Theorem cnvepima
StepHypRef Expression
1 cnvepresex 37140 . . 3 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
2 uniqsALTV 37135 . . 3 (( E ↾ 𝐴) ∈ V → (𝐴 / E ) = ( E “ 𝐴))
31, 2syl 17 . 2 (𝐴𝑉 (𝐴 / E ) = ( E “ 𝐴))
4 qsid 8772 . . 3 (𝐴 / E ) = 𝐴
54unieqi 4919 . 2 (𝐴 / E ) = 𝐴
63, 5eqtr3di 2788 1 (𝐴𝑉 → ( E “ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3475   cuni 4906   E cep 5577  ccnv 5673  cres 5676  cima 5677   / cqs 8697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-eprel 5578  df-xp 5680  df-rel 5681  df-cnv 5682  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ec 8700  df-qs 8704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator