MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq2 Structured version   Visualization version   GIF version

Theorem infeq2 9470
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq2 (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅))

Proof of Theorem infeq2
StepHypRef Expression
1 supeq2 9439 . 2 (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))
2 df-inf 9434 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
3 df-inf 9434 . 2 inf(𝐴, 𝐶, 𝑅) = sup(𝐴, 𝐶, 𝑅)
41, 2, 33eqtr4g 2789 1 (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  ccnv 5665  supcsup 9431  infcinf 9432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-in 3947  df-ss 3957  df-uni 4900  df-sup 9433  df-inf 9434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator