Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq2 | ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq2 8978 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐶, ◡𝑅)) | |
2 | df-inf 8973 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
3 | df-inf 8973 | . 2 ⊢ inf(𝐴, 𝐶, 𝑅) = sup(𝐴, 𝐶, ◡𝑅) | |
4 | 1, 2, 3 | 3eqtr4g 2798 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ◡ccnv 5518 supcsup 8970 infcinf 8971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rab 3062 df-v 3399 df-in 3848 df-ss 3858 df-uni 4794 df-sup 8972 df-inf 8973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |