![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq2 | ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq2 9439 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐶, ◡𝑅)) | |
2 | df-inf 9434 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
3 | df-inf 9434 | . 2 ⊢ inf(𝐴, 𝐶, 𝑅) = sup(𝐴, 𝐶, ◡𝑅) | |
4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ◡ccnv 5665 supcsup 9431 infcinf 9432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-in 3947 df-ss 3957 df-uni 4900 df-sup 9433 df-inf 9434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |