| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq2 | ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq2 9405 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐶, ◡𝑅)) | |
| 2 | df-inf 9400 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
| 3 | df-inf 9400 | . 2 ⊢ inf(𝐴, 𝐶, 𝑅) = sup(𝐴, 𝐶, ◡𝑅) | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ◡ccnv 5639 supcsup 9397 infcinf 9398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-ss 3933 df-uni 4874 df-sup 9399 df-inf 9400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |