 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq2 Structured version   Visualization version   GIF version

Theorem infeq2 8673
 Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq2 (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅))

Proof of Theorem infeq2
StepHypRef Expression
1 supeq2 8642 . 2 (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))
2 df-inf 8637 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
3 df-inf 8637 . 2 inf(𝐴, 𝐶, 𝑅) = sup(𝐴, 𝐶, 𝑅)
41, 2, 33eqtr4g 2839 1 (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1601  ◡ccnv 5354  supcsup 8634  infcinf 8635 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-uni 4672  df-sup 8636  df-inf 8637 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator