![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq2 | ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq2 9517 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐶, ◡𝑅)) | |
2 | df-inf 9512 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
3 | df-inf 9512 | . 2 ⊢ inf(𝐴, 𝐶, 𝑅) = sup(𝐴, 𝐶, ◡𝑅) | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ◡ccnv 5699 supcsup 9509 infcinf 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-uni 4932 df-sup 9511 df-inf 9512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |