![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version |
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | infeq1 9514 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 infcinf 9479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-ss 3980 df-uni 4913 df-sup 9480 df-inf 9481 |
This theorem is referenced by: infsn 9543 nninf 12969 nn0inf 12970 lcmcom 16627 lcmass 16648 lcmf0 16668 imasdsval2 17563 imasdsf1olem 24399 ftalem6 27136 aks4d1 42071 sticksstones2 42129 supminfxr2 45419 limsup0 45650 limsupvaluz 45664 limsupmnflem 45676 limsupvaluz2 45694 limsup10ex 45729 cnrefiisp 45786 ioodvbdlimc1lem2 45888 ioodvbdlimc2lem 45890 elaa2 46190 etransc 46239 ioorrnopn 46261 ovnval2 46501 ovolval3 46603 vonioolem2 46637 |
Copyright terms: Public domain | W3C validator |