![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version |
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | infeq1 9545 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 infcinf 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-uni 4932 df-sup 9511 df-inf 9512 |
This theorem is referenced by: infsn 9574 nninf 12994 nn0inf 12995 lcmcom 16640 lcmass 16661 lcmf0 16681 imasdsval2 17576 imasdsf1olem 24404 ftalem6 27139 aks4d1 42046 sticksstones2 42104 supminfxr2 45384 limsup0 45615 limsupvaluz 45629 limsupmnflem 45641 limsupvaluz2 45659 limsup10ex 45694 cnrefiisp 45751 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 elaa2 46155 etransc 46204 ioorrnopn 46226 ovnval2 46466 ovolval3 46568 vonioolem2 46602 |
Copyright terms: Public domain | W3C validator |