| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | infeq1 9386 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 infcinf 9350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-ss 3922 df-uni 4862 df-sup 9351 df-inf 9352 |
| This theorem is referenced by: infsn 9416 nninf 12848 nn0inf 12849 lcmcom 16522 lcmass 16543 lcmf0 16563 imasdsval2 17438 imasdsf1olem 24277 ftalem6 27004 aks4d1 42065 sticksstones2 42123 supminfxr2 45452 limsup0 45679 limsupvaluz 45693 limsupmnflem 45705 limsupvaluz2 45723 limsup10ex 45758 cnrefiisp 45815 ioodvbdlimc1lem2 45917 ioodvbdlimc2lem 45919 elaa2 46219 etransc 46268 ioorrnopn 46290 ovnval2 46530 ovolval3 46632 vonioolem2 46666 |
| Copyright terms: Public domain | W3C validator |