![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version |
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | infeq1 9471 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 infcinf 9436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 df-sup 9437 df-inf 9438 |
This theorem is referenced by: infsn 9500 nninf 12913 nn0inf 12914 lcmcom 16530 lcmass 16551 lcmf0 16571 imasdsval2 17462 imasdsf1olem 23879 ftalem6 26582 aks4d1 40954 sticksstones2 40963 supminfxr2 44179 limsup0 44410 limsupvaluz 44424 limsupmnflem 44436 limsupvaluz2 44454 limsup10ex 44489 cnrefiisp 44546 ioodvbdlimc1lem2 44648 ioodvbdlimc2lem 44650 elaa2 44950 etransc 44999 ioorrnopn 45021 ovnval2 45261 ovolval3 45363 vonioolem2 45397 |
Copyright terms: Public domain | W3C validator |