MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq1i Structured version   Visualization version   GIF version

Theorem infeq1i 9501
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infeq1i.1 𝐵 = 𝐶
Assertion
Ref Expression
infeq1i inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)

Proof of Theorem infeq1i
StepHypRef Expression
1 infeq1i.1 . 2 𝐵 = 𝐶
2 infeq1 9499 . 2 (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
31, 2ax-mp 5 1 inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  infcinf 9464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-in 3954  df-ss 3964  df-uni 4909  df-sup 9465  df-inf 9466
This theorem is referenced by:  infsn  9528  nninf  12943  nn0inf  12944  lcmcom  16563  lcmass  16584  lcmf0  16604  imasdsval2  17497  imasdsf1olem  24278  ftalem6  27009  aks4d1  41560  sticksstones2  41619  supminfxr2  44851  limsup0  45082  limsupvaluz  45096  limsupmnflem  45108  limsupvaluz2  45126  limsup10ex  45161  cnrefiisp  45218  ioodvbdlimc1lem2  45320  ioodvbdlimc2lem  45322  elaa2  45622  etransc  45671  ioorrnopn  45693  ovnval2  45933  ovolval3  46035  vonioolem2  46069
  Copyright terms: Public domain W3C validator