Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version |
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | infeq1 9235 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 infcinf 9200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-sup 9201 df-inf 9202 |
This theorem is referenced by: infsn 9264 nninf 12669 nn0inf 12670 lcmcom 16298 lcmass 16319 lcmf0 16339 imasdsval2 17227 imasdsf1olem 23526 ftalem6 26227 aks4d1 40097 sticksstones2 40103 supminfxr2 43009 limsup0 43235 limsupvaluz 43249 limsupmnflem 43261 limsupvaluz2 43279 limsup10ex 43314 cnrefiisp 43371 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 elaa2 43775 etransc 43824 ioorrnopn 43846 ovnval2 44083 ovolval3 44185 vonioolem2 44219 |
Copyright terms: Public domain | W3C validator |