| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | infeq1 9435 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 infcinf 9399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-ss 3934 df-uni 4875 df-sup 9400 df-inf 9401 |
| This theorem is referenced by: infsn 9465 nninf 12895 nn0inf 12896 lcmcom 16570 lcmass 16591 lcmf0 16611 imasdsval2 17486 imasdsf1olem 24268 ftalem6 26995 aks4d1 42084 sticksstones2 42142 supminfxr2 45472 limsup0 45699 limsupvaluz 45713 limsupmnflem 45725 limsupvaluz2 45743 limsup10ex 45778 cnrefiisp 45835 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 elaa2 46239 etransc 46288 ioorrnopn 46310 ovnval2 46550 ovolval3 46652 vonioolem2 46686 |
| Copyright terms: Public domain | W3C validator |