![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version |
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | infeq1 9473 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 infcinf 9438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 df-sup 9439 df-inf 9440 |
This theorem is referenced by: infsn 9502 nninf 12917 nn0inf 12918 lcmcom 16534 lcmass 16555 lcmf0 16575 imasdsval2 17466 imasdsf1olem 24099 ftalem6 26806 aks4d1 41260 sticksstones2 41269 supminfxr2 44478 limsup0 44709 limsupvaluz 44723 limsupmnflem 44735 limsupvaluz2 44753 limsup10ex 44788 cnrefiisp 44845 ioodvbdlimc1lem2 44947 ioodvbdlimc2lem 44949 elaa2 45249 etransc 45298 ioorrnopn 45320 ovnval2 45560 ovolval3 45662 vonioolem2 45696 |
Copyright terms: Public domain | W3C validator |