| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | infeq1 9361 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 infcinf 9325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-ss 3919 df-uni 4860 df-sup 9326 df-inf 9327 |
| This theorem is referenced by: infsn 9391 nninf 12827 nn0inf 12828 lcmcom 16504 lcmass 16525 lcmf0 16545 imasdsval2 17420 imasdsf1olem 24289 ftalem6 27016 aks4d1 42128 sticksstones2 42186 supminfxr2 45513 limsup0 45738 limsupvaluz 45752 limsupmnflem 45764 limsupvaluz2 45782 limsup10ex 45817 cnrefiisp 45874 ioodvbdlimc1lem2 45976 ioodvbdlimc2lem 45978 elaa2 46278 etransc 46327 ioorrnopn 46349 ovnval2 46589 ovolval3 46691 vonioolem2 46725 |
| Copyright terms: Public domain | W3C validator |