Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version |
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | infeq1 9092 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 infcinf 9057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-in 3873 df-ss 3883 df-uni 4820 df-sup 9058 df-inf 9059 |
This theorem is referenced by: infsn 9121 nninf 12525 nn0inf 12526 lcmcom 16150 lcmass 16171 lcmf0 16191 imasdsval2 17021 imasdsf1olem 23271 ftalem6 25960 sticksstones2 39825 supminfxr2 42684 limsup0 42910 limsupvaluz 42924 limsupmnflem 42936 limsupvaluz2 42954 limsup10ex 42989 cnrefiisp 43046 ioodvbdlimc1lem2 43148 ioodvbdlimc2lem 43150 elaa2 43450 etransc 43499 ioorrnopn 43521 ovnval2 43758 ovolval3 43860 vonioolem2 43894 |
Copyright terms: Public domain | W3C validator |