| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | infeq1 9428 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 infcinf 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-ss 3931 df-uni 4872 df-sup 9393 df-inf 9394 |
| This theorem is referenced by: infsn 9458 nninf 12888 nn0inf 12889 lcmcom 16563 lcmass 16584 lcmf0 16604 imasdsval2 17479 imasdsf1olem 24261 ftalem6 26988 aks4d1 42077 sticksstones2 42135 supminfxr2 45465 limsup0 45692 limsupvaluz 45706 limsupmnflem 45718 limsupvaluz2 45736 limsup10ex 45771 cnrefiisp 45828 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 elaa2 46232 etransc 46281 ioorrnopn 46303 ovnval2 46543 ovolval3 46645 vonioolem2 46679 |
| Copyright terms: Public domain | W3C validator |