| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | infeq1 9370 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 infcinf 9334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-ss 3915 df-uni 4861 df-sup 9335 df-inf 9336 |
| This theorem is referenced by: infsn 9400 nninf 12831 nn0inf 12832 lcmcom 16508 lcmass 16529 lcmf0 16549 imasdsval2 17424 imasdsf1olem 24291 ftalem6 27018 aks4d1 42205 sticksstones2 42263 supminfxr2 45594 limsup0 45819 limsupvaluz 45833 limsupmnflem 45845 limsupvaluz2 45863 limsup10ex 45898 cnrefiisp 45955 ioodvbdlimc1lem2 46057 ioodvbdlimc2lem 46059 elaa2 46359 etransc 46408 ioorrnopn 46430 ovnval2 46670 ovolval3 46772 vonioolem2 46806 |
| Copyright terms: Public domain | W3C validator |