| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | infeq1 9489 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 infcinf 9453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-ss 3943 df-uni 4884 df-sup 9454 df-inf 9455 |
| This theorem is referenced by: infsn 9519 nninf 12945 nn0inf 12946 lcmcom 16612 lcmass 16633 lcmf0 16653 imasdsval2 17530 imasdsf1olem 24312 ftalem6 27040 aks4d1 42102 sticksstones2 42160 supminfxr2 45496 limsup0 45723 limsupvaluz 45737 limsupmnflem 45749 limsupvaluz2 45767 limsup10ex 45802 cnrefiisp 45859 ioodvbdlimc1lem2 45961 ioodvbdlimc2lem 45963 elaa2 46263 etransc 46312 ioorrnopn 46334 ovnval2 46574 ovolval3 46676 vonioolem2 46710 |
| Copyright terms: Public domain | W3C validator |