| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | infeq1 9498 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 infcinf 9463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-ss 3948 df-uni 4888 df-sup 9464 df-inf 9465 |
| This theorem is referenced by: infsn 9527 nninf 12953 nn0inf 12954 lcmcom 16612 lcmass 16633 lcmf0 16653 imasdsval2 17532 imasdsf1olem 24328 ftalem6 27057 aks4d1 42049 sticksstones2 42107 supminfxr2 45437 limsup0 45666 limsupvaluz 45680 limsupmnflem 45692 limsupvaluz2 45710 limsup10ex 45745 cnrefiisp 45802 ioodvbdlimc1lem2 45904 ioodvbdlimc2lem 45906 elaa2 46206 etransc 46255 ioorrnopn 46277 ovnval2 46517 ovolval3 46619 vonioolem2 46653 |
| Copyright terms: Public domain | W3C validator |