MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq1i Structured version   Visualization version   GIF version

Theorem infeq1i 9437
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infeq1i.1 𝐵 = 𝐶
Assertion
Ref Expression
infeq1i inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)

Proof of Theorem infeq1i
StepHypRef Expression
1 infeq1i.1 . 2 𝐵 = 𝐶
2 infeq1 9435 . 2 (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
31, 2ax-mp 5 1 inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  infcinf 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-ss 3934  df-uni 4875  df-sup 9400  df-inf 9401
This theorem is referenced by:  infsn  9465  nninf  12895  nn0inf  12896  lcmcom  16570  lcmass  16591  lcmf0  16611  imasdsval2  17486  imasdsf1olem  24268  ftalem6  26995  aks4d1  42084  sticksstones2  42142  supminfxr2  45472  limsup0  45699  limsupvaluz  45713  limsupmnflem  45725  limsupvaluz2  45743  limsup10ex  45778  cnrefiisp  45835  ioodvbdlimc1lem2  45937  ioodvbdlimc2lem  45939  elaa2  46239  etransc  46288  ioorrnopn  46310  ovnval2  46550  ovolval3  46652  vonioolem2  46686
  Copyright terms: Public domain W3C validator