![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version |
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | infeq1 8793 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1525 infcinf 8758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-ral 3112 df-rex 3113 df-rab 3116 df-uni 4752 df-sup 8759 df-inf 8760 |
This theorem is referenced by: infsn 8822 nninf 12182 nn0inf 12183 lcmcom 15770 lcmass 15791 lcmf0 15811 imasdsval2 16622 imasdsf1olem 22670 ftalem6 25341 supminfxr2 41308 limsup0 41538 limsupvaluz 41552 limsupmnflem 41564 limsupvaluz2 41582 limsup10ex 41617 cnrefiisp 41674 ioodvbdlimc1lem2 41780 ioodvbdlimc2lem 41782 elaa2 42083 etransc 42132 ioorrnopn 42154 ovnval2 42391 ovolval3 42493 vonioolem2 42527 |
Copyright terms: Public domain | W3C validator |