Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq1i | Structured version Visualization version GIF version |
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
infeq1i | ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | infeq1 9165 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-sup 9131 df-inf 9132 |
This theorem is referenced by: infsn 9194 nninf 12598 nn0inf 12599 lcmcom 16226 lcmass 16247 lcmf0 16267 imasdsval2 17144 imasdsf1olem 23434 ftalem6 26132 aks4d1 40025 sticksstones2 40031 supminfxr2 42899 limsup0 43125 limsupvaluz 43139 limsupmnflem 43151 limsupvaluz2 43169 limsup10ex 43204 cnrefiisp 43261 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 elaa2 43665 etransc 43714 ioorrnopn 43736 ovnval2 43973 ovolval3 44075 vonioolem2 44109 |
Copyright terms: Public domain | W3C validator |