MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq2 Structured version   Visualization version   GIF version

Theorem supeq2 8914
Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
supeq2 (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))

Proof of Theorem supeq2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 3485 . . . 4 (𝐵 = 𝐶 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
2 raleq 3407 . . . . . 6 (𝐵 = 𝐶 → (∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧) ↔ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
32anbi2d 630 . . . . 5 (𝐵 = 𝐶 → ((∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
43rabbidv 3482 . . . 4 (𝐵 = 𝐶 → {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
51, 4eqtrd 2858 . . 3 (𝐵 = 𝐶 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
65unieqd 4854 . 2 (𝐵 = 𝐶 {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
7 df-sup 8908 . 2 sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
8 df-sup 8908 . 2 sup(𝐴, 𝐶, 𝑅) = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
96, 7, 83eqtr4g 2883 1 (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wral 3140  wrex 3141  {crab 3144   cuni 4840   class class class wbr 5068  supcsup 8906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rab 3149  df-v 3498  df-in 3945  df-ss 3954  df-uni 4841  df-sup 8908
This theorem is referenced by:  infeq2  8945
  Copyright terms: Public domain W3C validator