MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-inf Structured version   Visualization version   GIF version

Definition df-inf 8940
Description: Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
df-inf inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)

Detailed syntax breakdown of Definition df-inf
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
41, 2, 3cinf 8938 . 2 class inf(𝐴, 𝐵, 𝑅)
53ccnv 5523 . . 3 class 𝑅
61, 2, 5csup 8937 . 2 class sup(𝐴, 𝐵, 𝑅)
74, 6wceq 1538 1 wff inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
Colors of variables: wff setvar class
This definition is referenced by:  infeq1  8973  infeq2  8976  infeq3  8977  infeq123d  8978  nfinf  8979  infexd  8980  eqinf  8981  infval  8983  infcl  8985  inflb  8986  infglb  8987  infglbb  8988  fiinfcl  8998  infltoreq  8999  inf00  9003  infempty  9004  infiso  9005  dfinfre  11658  infrenegsup  11660  tosglb  30779  rencldnfilem  40134
  Copyright terms: Public domain W3C validator