MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-inf Structured version   Visualization version   GIF version

Definition df-inf 9322
Description: Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
df-inf inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)

Detailed syntax breakdown of Definition df-inf
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
41, 2, 3cinf 9320 . 2 class inf(𝐴, 𝐵, 𝑅)
53ccnv 5613 . . 3 class 𝑅
61, 2, 5csup 9319 . 2 class sup(𝐴, 𝐵, 𝑅)
74, 6wceq 1541 1 wff inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
Colors of variables: wff setvar class
This definition is referenced by:  infeq1  9356  infeq2  9359  infeq3  9360  infeq123d  9361  nfinf  9362  infexd  9363  eqinf  9364  infval  9366  infcl  9368  inflb  9369  infglb  9370  infglbb  9371  fiinfcl  9382  infltoreq  9383  inf00  9387  infempty  9388  infiso  9389  dfinfre  12095  infrenegsup  12097  tosglb  32946  rencldnfilem  42832
  Copyright terms: Public domain W3C validator