MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-inf Structured version   Visualization version   GIF version

Definition df-inf 9401
Description: Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
df-inf inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)

Detailed syntax breakdown of Definition df-inf
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
41, 2, 3cinf 9399 . 2 class inf(𝐴, 𝐵, 𝑅)
53ccnv 5640 . . 3 class 𝑅
61, 2, 5csup 9398 . 2 class sup(𝐴, 𝐵, 𝑅)
74, 6wceq 1540 1 wff inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
Colors of variables: wff setvar class
This definition is referenced by:  infeq1  9435  infeq2  9438  infeq3  9439  infeq123d  9440  nfinf  9441  infexd  9442  eqinf  9443  infval  9445  infcl  9447  inflb  9448  infglb  9449  infglbb  9450  fiinfcl  9461  infltoreq  9462  inf00  9466  infempty  9467  infiso  9468  dfinfre  12171  infrenegsup  12173  tosglb  32908  rencldnfilem  42815
  Copyright terms: Public domain W3C validator