Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq3 | ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5782 | . . 3 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
2 | supeq3 9208 | . . 3 ⊢ (◡𝑅 = ◡𝑆 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐵, ◡𝑆)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 = 𝑆 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐵, ◡𝑆)) |
4 | df-inf 9202 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
5 | df-inf 9202 | . 2 ⊢ inf(𝐴, 𝐵, 𝑆) = sup(𝐴, 𝐵, ◡𝑆) | |
6 | 3, 4, 5 | 3eqtr4g 2803 | 1 ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ◡ccnv 5588 supcsup 9199 infcinf 9200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-sup 9201 df-inf 9202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |