MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq3 Structured version   Visualization version   GIF version

Theorem infeq3 9549
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq3 (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆))

Proof of Theorem infeq3
StepHypRef Expression
1 cnveq 5898 . . 3 (𝑅 = 𝑆𝑅 = 𝑆)
2 supeq3 9518 . . 3 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
31, 2syl 17 . 2 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
4 df-inf 9512 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
5 df-inf 9512 . 2 inf(𝐴, 𝐵, 𝑆) = sup(𝐴, 𝐵, 𝑆)
63, 4, 53eqtr4g 2805 1 (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ccnv 5699  supcsup 9509  infcinf 9510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-ss 3993  df-uni 4932  df-br 5167  df-opab 5229  df-cnv 5708  df-sup 9511  df-inf 9512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator