MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq3 Structured version   Visualization version   GIF version

Theorem infeq3 9239
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq3 (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆))

Proof of Theorem infeq3
StepHypRef Expression
1 cnveq 5782 . . 3 (𝑅 = 𝑆𝑅 = 𝑆)
2 supeq3 9208 . . 3 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
31, 2syl 17 . 2 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
4 df-inf 9202 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
5 df-inf 9202 . 2 inf(𝐴, 𝐵, 𝑆) = sup(𝐴, 𝐵, 𝑆)
63, 4, 53eqtr4g 2803 1 (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ccnv 5588  supcsup 9199  infcinf 9200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-uni 4840  df-br 5075  df-opab 5137  df-cnv 5597  df-sup 9201  df-inf 9202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator