![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinin1 | Structured version Visualization version GIF version |
Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5064 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
iinin1 | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinin2 5083 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
2 | incom 4217 | . . . 4 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
4 | 3 | iineq2i 5019 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) |
5 | incom 4217 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶) | |
6 | 1, 4, 5 | 3eqtr4g 2800 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∩ cin 3962 ∅c0 4339 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-nul 4340 df-iin 4999 |
This theorem is referenced by: firest 17479 iniin1 45065 |
Copyright terms: Public domain | W3C validator |