MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinin1 Structured version   Visualization version   GIF version

Theorem iinin1 5082
Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5062 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
iinin1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iinin1
StepHypRef Expression
1 iinin2 5081 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
2 incom 4201 . . . 4 (𝐶𝐵) = (𝐵𝐶)
32a1i 11 . . 3 (𝑥𝐴 → (𝐶𝐵) = (𝐵𝐶))
43iineq2i 5019 . 2 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐵𝐶)
5 incom 4201 . 2 ( 𝑥𝐴 𝐶𝐵) = (𝐵 𝑥𝐴 𝐶)
61, 4, 53eqtr4g 2796 1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wne 2939  cin 3947  c0 4322   ciin 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rab 3432  df-v 3475  df-dif 3951  df-in 3955  df-nul 4323  df-iin 5000
This theorem is referenced by:  firest  17385  iniin1  44276
  Copyright terms: Public domain W3C validator