MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinin1 Structured version   Visualization version   GIF version

Theorem iinin1 5084
Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5064 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
iinin1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iinin1
StepHypRef Expression
1 iinin2 5083 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
2 incom 4217 . . . 4 (𝐶𝐵) = (𝐵𝐶)
32a1i 11 . . 3 (𝑥𝐴 → (𝐶𝐵) = (𝐵𝐶))
43iineq2i 5019 . 2 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐵𝐶)
5 incom 4217 . 2 ( 𝑥𝐴 𝐶𝐵) = (𝐵 𝑥𝐴 𝐶)
61, 4, 53eqtr4g 2800 1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938  cin 3962  c0 4339   ciin 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-in 3970  df-nul 4340  df-iin 4999
This theorem is referenced by:  firest  17479  iniin1  45065
  Copyright terms: Public domain W3C validator