Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem1 Structured version   Visualization version   GIF version

Theorem smfsuplem1 46816
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem1.m (𝜑𝑀 ∈ ℤ)
smfsuplem1.z 𝑍 = (ℤ𝑀)
smfsuplem1.s (𝜑𝑆 ∈ SAlg)
smfsuplem1.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem1.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem1.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfsuplem1.a (𝜑𝐴 ∈ ℝ)
smfsuplem1.h (𝜑𝐻:𝑍𝑆)
smfsuplem1.i ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
Assertion
Ref Expression
smfsuplem1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐷,𝑛,𝑥,𝑦   𝑥,𝐹,𝑦   𝑛,𝐺,𝑥   𝑛,𝐻,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑛)   𝐺(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem1
StepHypRef Expression
1 smfsuplem1.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
3 smfsuplem1.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
43ffvelcdmda 7059 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
5 eqid 2730 . . . . . . . . . . . 12 dom (𝐹𝑛) = dom (𝐹𝑛)
62, 4, 5smff 46737 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
76ffnd 6692 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹𝑛) Fn dom (𝐹𝑛))
87adantr 480 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐹𝑛) Fn dom (𝐹𝑛))
9 smfsuplem1.d . . . . . . . . . . . . 13 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
10 ssrab2 4046 . . . . . . . . . . . . 13 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
119, 10eqsstri 3996 . . . . . . . . . . . 12 𝐷 𝑛𝑍 dom (𝐹𝑛)
12 iinss2 5024 . . . . . . . . . . . 12 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
1311, 12sstrid 3961 . . . . . . . . . . 11 (𝑛𝑍𝐷 ⊆ dom (𝐹𝑛))
1413ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐷 ⊆ dom (𝐹𝑛))
15 cnvimass 6056 . . . . . . . . . . . . 13 (𝐺 “ (-∞(,]𝐴)) ⊆ dom 𝐺
1615sseli 3945 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) → 𝑥 ∈ dom 𝐺)
1716adantl 481 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
18 nfv 1914 . . . . . . . . . . . . . . 15 𝑛(𝜑𝑥𝐷)
19 smfsuplem1.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
20 uzid 12815 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2119, 20syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ𝑀))
22 smfsuplem1.z . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑀)
2321, 22eleqtrrdi 2840 . . . . . . . . . . . . . . . . 17 (𝜑𝑀𝑍)
2423ne0d 4308 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ≠ ∅)
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
266adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2712adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2811sseli 3945 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
2928adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3027, 29sseldd 3950 . . . . . . . . . . . . . . . . 17 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3130adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3226, 31ffvelcdmd 7060 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
339reqabi 3432 . . . . . . . . . . . . . . . . 17 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3433simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3534adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3618, 25, 32, 35suprclrnmpt 45252 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
37 smfsuplem1.g . . . . . . . . . . . . . 14 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
3836, 37fmptd 7089 . . . . . . . . . . . . 13 (𝜑𝐺:𝐷⟶ℝ)
3938fdmd 6701 . . . . . . . . . . . 12 (𝜑 → dom 𝐺 = 𝐷)
4039ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → dom 𝐺 = 𝐷)
4117, 40eleqtrd 2831 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥𝐷)
4214, 41sseldd 3950 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom (𝐹𝑛))
43 mnfxr 11238 . . . . . . . . . . 11 -∞ ∈ ℝ*
4443a1i 11 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
45 smfsuplem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
4645rexrd 11231 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
4746ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
4832an32s 652 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
4941, 48syldan 591 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
5049rexrd 11231 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
5149mnfltd 13091 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ < ((𝐹𝑛)‘𝑥))
5216adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
5338ffdmd 6721 . . . . . . . . . . . . . 14 (𝜑𝐺:dom 𝐺⟶ℝ)
5453ffvelcdmda 7059 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
5552, 54syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5655adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5745ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ)
58 an32 646 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) ↔ ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
5958biimpi 216 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
6018, 32, 35suprubrnmpt 45254 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6159, 60syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6237a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
6362, 36fvmpt2d 6984 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6463adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6561, 64breqtrrd 5138 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6641, 65syldan 591 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6743a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
6846adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
69 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
7038ffnd 6692 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 Fn 𝐷)
71 elpreima 7033 . . . . . . . . . . . . . . . . 17 (𝐺 Fn 𝐷 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7270, 71syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7469, 73mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴)))
7574simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ (-∞(,]𝐴))
7667, 68, 75iocleubd 45563 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7776adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7849, 56, 57, 66, 77letrd 11338 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
7944, 47, 50, 51, 78eliocd 45512 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
808, 42, 79elpreimad 7034 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
8180ssd 45081 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ ((𝐹𝑛) “ (-∞(,]𝐴)))
82 smfsuplem1.i . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
83 inss1 4203 . . . . . . . 8 ((𝐻𝑛) ∩ dom (𝐹𝑛)) ⊆ (𝐻𝑛)
8482, 83eqsstrdi 3994 . . . . . . 7 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8581, 84sstrd 3960 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8685ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
87 ssiin 5022 . . . . 5 ((𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛) ↔ ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8886, 87sylibr 234 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛))
8915, 38fssdm 6710 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝐷)
9088, 89ssind 4207 . . 3 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
91 iniin1 45126 . . . . 5 (𝑍 ≠ ∅ → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9224, 91syl 17 . . . 4 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9370adantr 480 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐺 Fn 𝐷)
94 simpr 484 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9523adantr 480 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑀𝑍)
96 fveq2 6861 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝐻𝑛) = (𝐻𝑀))
9796ineq1d 4185 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝐻𝑛) ∩ 𝐷) = ((𝐻𝑀) ∩ 𝐷))
9897eleq2d 2815 . . . . . . . 8 (𝑛 = 𝑀 → (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) ↔ 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)))
9994, 95, 98eliind 45072 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷))
100 elinel2 4168 . . . . . . 7 (𝑥 ∈ ((𝐻𝑀) ∩ 𝐷) → 𝑥𝐷)
10199, 100syl 17 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
10243a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ ∈ ℝ*)
10346adantr 480 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ*)
10463, 36eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
105104rexrd 11231 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ*)
106101, 105syldan 591 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ*)
107100adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → 𝑥𝐷)
108107, 104syldan 591 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ)
109108mnfltd 13091 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → -∞ < (𝐺𝑥))
11099, 109syldan 591 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ < (𝐺𝑥))
111101, 63syldan 591 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
112 nfv 1914 . . . . . . . . . . 11 𝑛𝜑
113 nfcv 2892 . . . . . . . . . . . 12 𝑛𝑥
114 nfii1 4996 . . . . . . . . . . . 12 𝑛 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
115113, 114nfel 2907 . . . . . . . . . . 11 𝑛 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
116112, 115nfan 1899 . . . . . . . . . 10 𝑛(𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
117 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝜑)
118 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑛𝑍)
119 eliinid 45112 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
120119adantll 714 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
121 elinel1 4167 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥 ∈ (𝐻𝑛))
1221213ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐻𝑛))
123 elinel2 4168 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥𝐷)
124123adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
12530ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥𝐷) → 𝑥 ∈ dom (𝐹𝑛))
126124, 125syldan 591 . . . . . . . . . . . . . . . 16 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
1271263adant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
128122, 127elind 4166 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑛) ∩ dom (𝐹𝑛)))
129823adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
130128, 129eleqtrrd 2832 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
13143a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
132463ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
133 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
134 elpreima 7033 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑛) Fn dom (𝐹𝑛) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1357, 134syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1361353adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
137133, 136mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴)))
138137simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
139131, 132, 138iocleubd 45563 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
140130, 139syld3an3 1411 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
141117, 118, 120, 140syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
142141ex 412 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝑛𝑍 → ((𝐹𝑛)‘𝑥) ≤ 𝐴))
143116, 142ralrimi 3236 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴)
14424adantr 480 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑍 ≠ ∅)
145101, 32syldanl 602 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
146101, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
14745adantr 480 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ)
148116, 144, 145, 146, 147suprleubrnmpt 45425 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴))
149143, 148mpbird 257 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴)
150111, 149eqbrtrd 5132 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ≤ 𝐴)
151102, 103, 106, 110, 150eliocd 45512 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ (-∞(,]𝐴))
15293, 101, 151elpreimad 7034 . . . . 5 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
153152ssd 45081 . . . 4 (𝜑 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15492, 153eqsstrd 3984 . . 3 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15590, 154eqssd 3967 . 2 (𝜑 → (𝐺 “ (-∞(,]𝐴)) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
156 eqid 2730 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
157 fvex 6874 . . . . . . . . 9 (𝐹𝑛) ∈ V
158157dmex 7888 . . . . . . . 8 dom (𝐹𝑛) ∈ V
159158rgenw 3049 . . . . . . 7 𝑛𝑍 dom (𝐹𝑛) ∈ V
160159a1i 11 . . . . . 6 (𝜑 → ∀𝑛𝑍 dom (𝐹𝑛) ∈ V)
16124, 160iinexd 45134 . . . . 5 (𝜑 𝑛𝑍 dom (𝐹𝑛) ∈ V)
162156, 161rabexd 5298 . . . 4 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ∈ V)
1639, 162eqeltrid 2833 . . 3 (𝜑𝐷 ∈ V)
16422uzct 45064 . . . . 5 𝑍 ≼ ω
165164a1i 11 . . . 4 (𝜑𝑍 ≼ ω)
166 smfsuplem1.h . . . . 5 (𝜑𝐻:𝑍𝑆)
167166ffvelcdmda 7059 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ 𝑆)
1681, 165, 24, 167saliincl 46332 . . 3 (𝜑 𝑛𝑍 (𝐻𝑛) ∈ 𝑆)
169 eqid 2730 . . 3 ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷)
1701, 163, 168, 169elrestd 45109 . 2 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷))
171155, 170eqeltrd 2829 1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cin 3916  wss 3917  c0 4299   ciin 4959   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  supcsup 9398  cr 11074  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cz 12536  cuz 12800  (,]cioc 13314  t crest 17390  SAlgcsalg 46313  SMblFncsmblfn 46700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-ioo 13317  df-ioc 13318  df-ico 13319  df-rest 17392  df-salg 46314  df-smblfn 46701
This theorem is referenced by:  smfsuplem2  46817
  Copyright terms: Public domain W3C validator