Proof of Theorem smfsuplem1
Step | Hyp | Ref
| Expression |
1 | | smfsuplem1.s |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ SAlg) |
2 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
3 | | smfsuplem1.f |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
4 | 3 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
5 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ dom
(𝐹‘𝑛) = dom (𝐹‘𝑛) |
6 | 2, 4, 5 | smff 44155 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
7 | 6 | ffnd 6585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) Fn dom (𝐹‘𝑛)) |
8 | 7 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → (𝐹‘𝑛) Fn dom (𝐹‘𝑛)) |
9 | | smfsuplem1.d |
. . . . . . . . . . . . 13
⊢ 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
10 | | ssrab2 4009 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} ⊆ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
11 | 9, 10 | eqsstri 3951 |
. . . . . . . . . . . 12
⊢ 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
12 | | iinss2 4983 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 → ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ⊆ dom (𝐹‘𝑛)) |
13 | 11, 12 | sstrid 3928 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ 𝑍 → 𝐷 ⊆ dom (𝐹‘𝑛)) |
14 | 13 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝐷 ⊆ dom (𝐹‘𝑛)) |
15 | | cnvimass 5978 |
. . . . . . . . . . . . 13
⊢ (◡𝐺 “ (-∞(,]𝐴)) ⊆ dom 𝐺 |
16 | 15 | sseli 3913 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴)) → 𝑥 ∈ dom 𝐺) |
17 | 16 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺) |
18 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) |
19 | | smfsuplem1.m |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℤ) |
20 | | uzid 12526 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
22 | | smfsuplem1.z |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑍 =
(ℤ≥‘𝑀) |
23 | 21, 22 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
24 | 23 | ne0d 4266 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑍 ≠ ∅) |
25 | 24 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑍 ≠ ∅) |
26 | 6 | adantlr 711 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
27 | 12 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ⊆ dom (𝐹‘𝑛)) |
28 | 11 | sseli 3913 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
29 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
30 | 27, 29 | sseldd 3918 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
31 | 30 | adantll 710 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
32 | 26, 31 | ffvelrnd 6944 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
33 | 9 | rabeq2i 3412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) |
34 | 33 | simprbi 496 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐷 → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
36 | 18, 25, 32, 35 | suprclrnmpt 42686 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ∈
ℝ) |
37 | | smfsuplem1.g |
. . . . . . . . . . . . . 14
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
38 | 36, 37 | fmptd 6970 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
39 | 38 | fdmd 6595 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐺 = 𝐷) |
40 | 39 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → dom 𝐺 = 𝐷) |
41 | 17, 40 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ 𝐷) |
42 | 14, 41 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom (𝐹‘𝑛)) |
43 | | mnfxr 10963 |
. . . . . . . . . . 11
⊢ -∞
∈ ℝ* |
44 | 43 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → -∞ ∈
ℝ*) |
45 | | smfsuplem1.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℝ) |
46 | 45 | rexrd 10956 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
47 | 46 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈
ℝ*) |
48 | 32 | an32s 648 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
49 | 41, 48 | syldan 590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
50 | 49 | rexrd 10956 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → ((𝐹‘𝑛)‘𝑥) ∈
ℝ*) |
51 | 49 | mnfltd 12789 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → -∞ < ((𝐹‘𝑛)‘𝑥)) |
52 | 16 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺) |
53 | 38 | ffdmd 6615 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:dom 𝐺⟶ℝ) |
54 | 53 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) ∈ ℝ) |
55 | 52, 54 | syldan 590 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → (𝐺‘𝑥) ∈ ℝ) |
56 | 55 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → (𝐺‘𝑥) ∈ ℝ) |
57 | 45 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ) |
58 | | an32 642 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐷) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍)) |
59 | 58 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐷) → ((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍)) |
60 | 18, 32, 35 | suprubrnmpt 42688 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ≤ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝑛)‘𝑥) ≤ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
62 | 37 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ))) |
63 | 62, 36 | fvmpt2d 6870 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐺‘𝑥) = sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
64 | 63 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐷) → (𝐺‘𝑥) = sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
65 | 61, 64 | breqtrrd 5098 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝑛)‘𝑥) ≤ (𝐺‘𝑥)) |
66 | 41, 65 | syldan 590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → ((𝐹‘𝑛)‘𝑥) ≤ (𝐺‘𝑥)) |
67 | 43 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → -∞ ∈
ℝ*) |
68 | 46 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈
ℝ*) |
69 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) |
70 | 38 | ffnd 6585 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 Fn 𝐷) |
71 | | elpreima 6917 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 Fn 𝐷 → (𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴)) ↔ (𝑥 ∈ 𝐷 ∧ (𝐺‘𝑥) ∈ (-∞(,]𝐴)))) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴)) ↔ (𝑥 ∈ 𝐷 ∧ (𝐺‘𝑥) ∈ (-∞(,]𝐴)))) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → (𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴)) ↔ (𝑥 ∈ 𝐷 ∧ (𝐺‘𝑥) ∈ (-∞(,]𝐴)))) |
74 | 69, 73 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → (𝑥 ∈ 𝐷 ∧ (𝐺‘𝑥) ∈ (-∞(,]𝐴))) |
75 | 74 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → (𝐺‘𝑥) ∈ (-∞(,]𝐴)) |
76 | 67, 68, 75 | iocleubd 42987 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → (𝐺‘𝑥) ≤ 𝐴) |
77 | 76 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → (𝐺‘𝑥) ≤ 𝐴) |
78 | 49, 56, 57, 66, 77 | letrd 11062 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → ((𝐹‘𝑛)‘𝑥) ≤ 𝐴) |
79 | 44, 47, 50, 51, 78 | eliocd 42935 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → ((𝐹‘𝑛)‘𝑥) ∈ (-∞(,]𝐴)) |
80 | 8, 42, 79 | elpreimad 6918 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) |
81 | 80 | ssd 42519 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡𝐺 “ (-∞(,]𝐴)) ⊆ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) |
82 | | smfsuplem1.i |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) |
83 | | inss1 4159 |
. . . . . . . 8
⊢ ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛)) ⊆ (𝐻‘𝑛) |
84 | 82, 83 | eqsstrdi 3971 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) ⊆ (𝐻‘𝑛)) |
85 | 81, 84 | sstrd 3927 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻‘𝑛)) |
86 | 85 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (◡𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻‘𝑛)) |
87 | | ssiin 4981 |
. . . . 5
⊢ ((◡𝐺 “ (-∞(,]𝐴)) ⊆ ∩ 𝑛 ∈ 𝑍 (𝐻‘𝑛) ↔ ∀𝑛 ∈ 𝑍 (◡𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻‘𝑛)) |
88 | 86, 87 | sylibr 233 |
. . . 4
⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ⊆ ∩ 𝑛 ∈ 𝑍 (𝐻‘𝑛)) |
89 | 15, 38 | fssdm 6604 |
. . . 4
⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ⊆ 𝐷) |
90 | 88, 89 | ssind 4163 |
. . 3
⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ⊆ (∩ 𝑛 ∈ 𝑍 (𝐻‘𝑛) ∩ 𝐷)) |
91 | | iniin1 42563 |
. . . . 5
⊢ (𝑍 ≠ ∅ → (∩ 𝑛 ∈ 𝑍 (𝐻‘𝑛) ∩ 𝐷) = ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) |
92 | 24, 91 | syl 17 |
. . . 4
⊢ (𝜑 → (∩ 𝑛 ∈ 𝑍 (𝐻‘𝑛) ∩ 𝐷) = ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) |
93 | 70 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → 𝐺 Fn 𝐷) |
94 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) |
95 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → 𝑀 ∈ 𝑍) |
96 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → (𝐻‘𝑛) = (𝐻‘𝑀)) |
97 | 96 | ineq1d 4142 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → ((𝐻‘𝑛) ∩ 𝐷) = ((𝐻‘𝑀) ∩ 𝐷)) |
98 | 97 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → (𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷) ↔ 𝑥 ∈ ((𝐻‘𝑀) ∩ 𝐷))) |
99 | 94, 95, 98 | eliind 42508 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻‘𝑀) ∩ 𝐷)) |
100 | | elinel2 4126 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐻‘𝑀) ∩ 𝐷) → 𝑥 ∈ 𝐷) |
101 | 99, 100 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ 𝐷) |
102 | 43 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → -∞ ∈
ℝ*) |
103 | 46 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → 𝐴 ∈
ℝ*) |
104 | 63, 36 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐺‘𝑥) ∈ ℝ) |
105 | 104 | rexrd 10956 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐺‘𝑥) ∈
ℝ*) |
106 | 101, 105 | syldan 590 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → (𝐺‘𝑥) ∈
ℝ*) |
107 | 100 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐻‘𝑀) ∩ 𝐷)) → 𝑥 ∈ 𝐷) |
108 | 107, 104 | syldan 590 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐻‘𝑀) ∩ 𝐷)) → (𝐺‘𝑥) ∈ ℝ) |
109 | 108 | mnfltd 12789 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐻‘𝑀) ∩ 𝐷)) → -∞ < (𝐺‘𝑥)) |
110 | 99, 109 | syldan 590 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → -∞ < (𝐺‘𝑥)) |
111 | 101, 63 | syldan 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → (𝐺‘𝑥) = sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
112 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝜑 |
113 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑥 |
114 | | nfii1 4956 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷) |
115 | 113, 114 | nfel 2920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷) |
116 | 112, 115 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) |
117 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) ∧ 𝑛 ∈ 𝑍) → 𝜑) |
118 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
119 | | eliinid 42550 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) |
120 | 119 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) |
121 | | elinel1 4125 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷) → 𝑥 ∈ (𝐻‘𝑛)) |
122 | 121 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐻‘𝑛)) |
123 | | elinel2 4126 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷) → 𝑥 ∈ 𝐷) |
124 | 123 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ 𝐷) |
125 | 30 | ancoms 458 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ dom (𝐹‘𝑛)) |
126 | 124, 125 | syldan 590 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹‘𝑛)) |
127 | 126 | 3adant1 1128 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹‘𝑛)) |
128 | 122, 127 | elind 4124 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) |
129 | 82 | 3adant3 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) → (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) |
130 | 128, 129 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) |
131 | 43 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) → -∞ ∈
ℝ*) |
132 | 46 | 3ad2ant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) → 𝐴 ∈
ℝ*) |
133 | | simp3 1136 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) → 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) |
134 | | elpreima 6917 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑛) Fn dom (𝐹‘𝑛) → (𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹‘𝑛) ∧ ((𝐹‘𝑛)‘𝑥) ∈ (-∞(,]𝐴)))) |
135 | 7, 134 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹‘𝑛) ∧ ((𝐹‘𝑛)‘𝑥) ∈ (-∞(,]𝐴)))) |
136 | 135 | 3adant3 1130 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹‘𝑛) ∧ ((𝐹‘𝑛)‘𝑥) ∈ (-∞(,]𝐴)))) |
137 | 133, 136 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ dom (𝐹‘𝑛) ∧ ((𝐹‘𝑛)‘𝑥) ∈ (-∞(,]𝐴))) |
138 | 137 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) → ((𝐹‘𝑛)‘𝑥) ∈ (-∞(,]𝐴)) |
139 | 131, 132,
138 | iocleubd 42987 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ (◡(𝐹‘𝑛) “ (-∞(,]𝐴))) → ((𝐹‘𝑛)‘𝑥) ≤ 𝐴) |
140 | 130, 139 | syld3an3 1407 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ((𝐻‘𝑛) ∩ 𝐷)) → ((𝐹‘𝑛)‘𝑥) ≤ 𝐴) |
141 | 117, 118,
120, 140 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ≤ 𝐴) |
142 | 141 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → (𝑛 ∈ 𝑍 → ((𝐹‘𝑛)‘𝑥) ≤ 𝐴)) |
143 | 116, 142 | ralrimi 3139 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝐴) |
144 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → 𝑍 ≠ ∅) |
145 | 101, 32 | syldanl 601 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
146 | 101, 34 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
147 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ) |
148 | 116, 144,
145, 146, 147 | suprleubrnmpt 42852 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → (sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴 ↔ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝐴)) |
149 | 143, 148 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴) |
150 | 111, 149 | eqbrtrd 5092 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → (𝐺‘𝑥) ≤ 𝐴) |
151 | 102, 103,
106, 110, 150 | eliocd 42935 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → (𝐺‘𝑥) ∈ (-∞(,]𝐴)) |
152 | 93, 101, 151 | elpreimad 6918 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷)) → 𝑥 ∈ (◡𝐺 “ (-∞(,]𝐴))) |
153 | 152 | ssd 42519 |
. . . 4
⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛) ∩ 𝐷) ⊆ (◡𝐺 “ (-∞(,]𝐴))) |
154 | 92, 153 | eqsstrd 3955 |
. . 3
⊢ (𝜑 → (∩ 𝑛 ∈ 𝑍 (𝐻‘𝑛) ∩ 𝐷) ⊆ (◡𝐺 “ (-∞(,]𝐴))) |
155 | 90, 154 | eqssd 3934 |
. 2
⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) = (∩
𝑛 ∈ 𝑍 (𝐻‘𝑛) ∩ 𝐷)) |
156 | | eqid 2738 |
. . . . 5
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
157 | | fvex 6769 |
. . . . . . . . 9
⊢ (𝐹‘𝑛) ∈ V |
158 | 157 | dmex 7732 |
. . . . . . . 8
⊢ dom
(𝐹‘𝑛) ∈ V |
159 | 158 | rgenw 3075 |
. . . . . . 7
⊢
∀𝑛 ∈
𝑍 dom (𝐹‘𝑛) ∈ V |
160 | 159 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∈ V) |
161 | 24, 160 | iinexd 42571 |
. . . . 5
⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∈ V) |
162 | 156, 161 | rabexd 5252 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} ∈ V) |
163 | 9, 162 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → 𝐷 ∈ V) |
164 | 22 | uzct 42500 |
. . . . 5
⊢ 𝑍 ≼
ω |
165 | 164 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑍 ≼ ω) |
166 | | smfsuplem1.h |
. . . . 5
⊢ (𝜑 → 𝐻:𝑍⟶𝑆) |
167 | 166 | ffvelrnda 6943 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) ∈ 𝑆) |
168 | 1, 165, 24, 167 | saliincl 43756 |
. . 3
⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 (𝐻‘𝑛) ∈ 𝑆) |
169 | | eqid 2738 |
. . 3
⊢ (∩ 𝑛 ∈ 𝑍 (𝐻‘𝑛) ∩ 𝐷) = (∩
𝑛 ∈ 𝑍 (𝐻‘𝑛) ∩ 𝐷) |
170 | 1, 163, 168, 169 | elrestd 42547 |
. 2
⊢ (𝜑 → (∩ 𝑛 ∈ 𝑍 (𝐻‘𝑛) ∩ 𝐷) ∈ (𝑆 ↾t 𝐷)) |
171 | 155, 170 | eqeltrd 2839 |
1
⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ∈ (𝑆 ↾t 𝐷)) |