Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem1 Structured version   Visualization version   GIF version

Theorem smfsuplem1 46732
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem1.m (𝜑𝑀 ∈ ℤ)
smfsuplem1.z 𝑍 = (ℤ𝑀)
smfsuplem1.s (𝜑𝑆 ∈ SAlg)
smfsuplem1.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem1.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem1.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfsuplem1.a (𝜑𝐴 ∈ ℝ)
smfsuplem1.h (𝜑𝐻:𝑍𝑆)
smfsuplem1.i ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
Assertion
Ref Expression
smfsuplem1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐷,𝑛,𝑥,𝑦   𝑥,𝐹,𝑦   𝑛,𝐺,𝑥   𝑛,𝐻,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑛)   𝐺(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem1
StepHypRef Expression
1 smfsuplem1.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
3 smfsuplem1.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
43ffvelcdmda 7118 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
5 eqid 2740 . . . . . . . . . . . 12 dom (𝐹𝑛) = dom (𝐹𝑛)
62, 4, 5smff 46653 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
76ffnd 6748 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹𝑛) Fn dom (𝐹𝑛))
87adantr 480 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐹𝑛) Fn dom (𝐹𝑛))
9 smfsuplem1.d . . . . . . . . . . . . 13 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
10 ssrab2 4103 . . . . . . . . . . . . 13 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
119, 10eqsstri 4043 . . . . . . . . . . . 12 𝐷 𝑛𝑍 dom (𝐹𝑛)
12 iinss2 5080 . . . . . . . . . . . 12 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
1311, 12sstrid 4020 . . . . . . . . . . 11 (𝑛𝑍𝐷 ⊆ dom (𝐹𝑛))
1413ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐷 ⊆ dom (𝐹𝑛))
15 cnvimass 6111 . . . . . . . . . . . . 13 (𝐺 “ (-∞(,]𝐴)) ⊆ dom 𝐺
1615sseli 4004 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) → 𝑥 ∈ dom 𝐺)
1716adantl 481 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
18 nfv 1913 . . . . . . . . . . . . . . 15 𝑛(𝜑𝑥𝐷)
19 smfsuplem1.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
20 uzid 12918 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2119, 20syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ𝑀))
22 smfsuplem1.z . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑀)
2321, 22eleqtrrdi 2855 . . . . . . . . . . . . . . . . 17 (𝜑𝑀𝑍)
2423ne0d 4365 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ≠ ∅)
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
266adantlr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2712adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2811sseli 4004 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
2928adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3027, 29sseldd 4009 . . . . . . . . . . . . . . . . 17 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3130adantll 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3226, 31ffvelcdmd 7119 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
339reqabi 3467 . . . . . . . . . . . . . . . . 17 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3433simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3534adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3618, 25, 32, 35suprclrnmpt 45160 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
37 smfsuplem1.g . . . . . . . . . . . . . 14 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
3836, 37fmptd 7148 . . . . . . . . . . . . 13 (𝜑𝐺:𝐷⟶ℝ)
3938fdmd 6757 . . . . . . . . . . . 12 (𝜑 → dom 𝐺 = 𝐷)
4039ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → dom 𝐺 = 𝐷)
4117, 40eleqtrd 2846 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥𝐷)
4214, 41sseldd 4009 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom (𝐹𝑛))
43 mnfxr 11347 . . . . . . . . . . 11 -∞ ∈ ℝ*
4443a1i 11 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
45 smfsuplem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
4645rexrd 11340 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
4746ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
4832an32s 651 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
4941, 48syldan 590 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
5049rexrd 11340 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
5149mnfltd 13187 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ < ((𝐹𝑛)‘𝑥))
5216adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
5338ffdmd 6778 . . . . . . . . . . . . . 14 (𝜑𝐺:dom 𝐺⟶ℝ)
5453ffvelcdmda 7118 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
5552, 54syldan 590 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5655adantlr 714 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5745ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ)
58 an32 645 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) ↔ ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
5958biimpi 216 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
6018, 32, 35suprubrnmpt 45162 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6159, 60syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6237a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
6362, 36fvmpt2d 7042 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6463adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6561, 64breqtrrd 5194 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6641, 65syldan 590 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6743a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
6846adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
69 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
7038ffnd 6748 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 Fn 𝐷)
71 elpreima 7091 . . . . . . . . . . . . . . . . 17 (𝐺 Fn 𝐷 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7270, 71syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7469, 73mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴)))
7574simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ (-∞(,]𝐴))
7667, 68, 75iocleubd 45477 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7776adantlr 714 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7849, 56, 57, 66, 77letrd 11447 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
7944, 47, 50, 51, 78eliocd 45425 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
808, 42, 79elpreimad 7092 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
8180ssd 44982 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ ((𝐹𝑛) “ (-∞(,]𝐴)))
82 smfsuplem1.i . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
83 inss1 4258 . . . . . . . 8 ((𝐻𝑛) ∩ dom (𝐹𝑛)) ⊆ (𝐻𝑛)
8482, 83eqsstrdi 4063 . . . . . . 7 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8581, 84sstrd 4019 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8685ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
87 ssiin 5078 . . . . 5 ((𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛) ↔ ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8886, 87sylibr 234 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛))
8915, 38fssdm 6766 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝐷)
9088, 89ssind 4262 . . 3 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
91 iniin1 45027 . . . . 5 (𝑍 ≠ ∅ → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9224, 91syl 17 . . . 4 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9370adantr 480 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐺 Fn 𝐷)
94 simpr 484 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9523adantr 480 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑀𝑍)
96 fveq2 6920 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝐻𝑛) = (𝐻𝑀))
9796ineq1d 4240 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝐻𝑛) ∩ 𝐷) = ((𝐻𝑀) ∩ 𝐷))
9897eleq2d 2830 . . . . . . . 8 (𝑛 = 𝑀 → (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) ↔ 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)))
9994, 95, 98eliind 44973 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷))
100 elinel2 4225 . . . . . . 7 (𝑥 ∈ ((𝐻𝑀) ∩ 𝐷) → 𝑥𝐷)
10199, 100syl 17 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
10243a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ ∈ ℝ*)
10346adantr 480 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ*)
10463, 36eqeltrd 2844 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
105104rexrd 11340 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ*)
106101, 105syldan 590 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ*)
107100adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → 𝑥𝐷)
108107, 104syldan 590 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ)
109108mnfltd 13187 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → -∞ < (𝐺𝑥))
11099, 109syldan 590 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ < (𝐺𝑥))
111101, 63syldan 590 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
112 nfv 1913 . . . . . . . . . . 11 𝑛𝜑
113 nfcv 2908 . . . . . . . . . . . 12 𝑛𝑥
114 nfii1 5052 . . . . . . . . . . . 12 𝑛 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
115113, 114nfel 2923 . . . . . . . . . . 11 𝑛 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
116112, 115nfan 1898 . . . . . . . . . 10 𝑛(𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
117 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝜑)
118 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑛𝑍)
119 eliinid 45013 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
120119adantll 713 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
121 elinel1 4224 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥 ∈ (𝐻𝑛))
1221213ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐻𝑛))
123 elinel2 4225 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥𝐷)
124123adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
12530ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥𝐷) → 𝑥 ∈ dom (𝐹𝑛))
126124, 125syldan 590 . . . . . . . . . . . . . . . 16 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
1271263adant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
128122, 127elind 4223 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑛) ∩ dom (𝐹𝑛)))
129823adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
130128, 129eleqtrrd 2847 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
13143a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
132463ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
133 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
134 elpreima 7091 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑛) Fn dom (𝐹𝑛) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1357, 134syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1361353adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
137133, 136mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴)))
138137simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
139131, 132, 138iocleubd 45477 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
140130, 139syld3an3 1409 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
141117, 118, 120, 140syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
142141ex 412 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝑛𝑍 → ((𝐹𝑛)‘𝑥) ≤ 𝐴))
143116, 142ralrimi 3263 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴)
14424adantr 480 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑍 ≠ ∅)
145101, 32syldanl 601 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
146101, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
14745adantr 480 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ)
148116, 144, 145, 146, 147suprleubrnmpt 45337 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴))
149143, 148mpbird 257 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴)
150111, 149eqbrtrd 5188 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ≤ 𝐴)
151102, 103, 106, 110, 150eliocd 45425 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ (-∞(,]𝐴))
15293, 101, 151elpreimad 7092 . . . . 5 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
153152ssd 44982 . . . 4 (𝜑 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15492, 153eqsstrd 4047 . . 3 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15590, 154eqssd 4026 . 2 (𝜑 → (𝐺 “ (-∞(,]𝐴)) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
156 eqid 2740 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
157 fvex 6933 . . . . . . . . 9 (𝐹𝑛) ∈ V
158157dmex 7949 . . . . . . . 8 dom (𝐹𝑛) ∈ V
159158rgenw 3071 . . . . . . 7 𝑛𝑍 dom (𝐹𝑛) ∈ V
160159a1i 11 . . . . . 6 (𝜑 → ∀𝑛𝑍 dom (𝐹𝑛) ∈ V)
16124, 160iinexd 45035 . . . . 5 (𝜑 𝑛𝑍 dom (𝐹𝑛) ∈ V)
162156, 161rabexd 5358 . . . 4 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ∈ V)
1639, 162eqeltrid 2848 . . 3 (𝜑𝐷 ∈ V)
16422uzct 44965 . . . . 5 𝑍 ≼ ω
165164a1i 11 . . . 4 (𝜑𝑍 ≼ ω)
166 smfsuplem1.h . . . . 5 (𝜑𝐻:𝑍𝑆)
167166ffvelcdmda 7118 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ 𝑆)
1681, 165, 24, 167saliincl 46248 . . 3 (𝜑 𝑛𝑍 (𝐻𝑛) ∈ 𝑆)
169 eqid 2740 . . 3 ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷)
1701, 163, 168, 169elrestd 45010 . 2 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷))
171155, 170eqeltrd 2844 1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352   ciin 5016   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  cdom 9001  supcsup 9509  cr 11183  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cz 12639  cuz 12903  (,]cioc 13408  t crest 17480  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-ioo 13411  df-ioc 13412  df-ico 13413  df-rest 17482  df-salg 46230  df-smblfn 46617
This theorem is referenced by:  smfsuplem2  46733
  Copyright terms: Public domain W3C validator