Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unirestss Structured version   Visualization version   GIF version

Theorem unirestss 43003
Description: The union of an elementwise intersection is a subset of the underlying set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
unirestss.1 (𝜑𝐴𝑉)
unirestss.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
unirestss (𝜑 (𝐴t 𝐵) ⊆ 𝐴)

Proof of Theorem unirestss
StepHypRef Expression
1 unirestss.1 . . 3 (𝜑𝐴𝑉)
2 unirestss.2 . . 3 (𝜑𝐵𝑊)
31, 2restuni6 43001 . 2 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
4 inss1 4175 . 2 ( 𝐴𝐵) ⊆ 𝐴
53, 4eqsstrdi 3986 1 (𝜑 (𝐴t 𝐵) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cin 3897  wss 3898   cuni 4852  (class class class)co 7337  t crest 17228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-rest 17230
This theorem is referenced by:  cnfsmf  44624
  Copyright terms: Public domain W3C validator