MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  int0el Structured version   Visualization version   GIF version

Theorem int0el 4929
Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
int0el (∅ ∈ 𝐴 𝐴 = ∅)

Proof of Theorem int0el
StepHypRef Expression
1 intss1 4913 . 2 (∅ ∈ 𝐴 𝐴 ⊆ ∅)
2 0ss 4350 . . 3 ∅ ⊆ 𝐴
32a1i 11 . 2 (∅ ∈ 𝐴 → ∅ ⊆ 𝐴)
41, 3eqssd 3952 1 (∅ ∈ 𝐴 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3902  c0 4283   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-ss 3919  df-nul 4284  df-int 4898
This theorem is referenced by:  intv  5302  inton  6365  onint0  7724  oev2  8438  cuteq0  27774  ipolub00  49023
  Copyright terms: Public domain W3C validator