Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > int0el | Structured version Visualization version GIF version |
Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
int0el | ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 4891 | . 2 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 ⊆ ∅) | |
2 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ ∩ 𝐴 | |
3 | 2 | a1i 11 | . 2 ⊢ (∅ ∈ 𝐴 → ∅ ⊆ ∩ 𝐴) |
4 | 1, 3 | eqssd 3934 | 1 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-int 4877 |
This theorem is referenced by: intv 5281 inton 6308 onint0 7618 oev2 8315 ipolub00 46167 |
Copyright terms: Public domain | W3C validator |