MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  int0el Structured version   Visualization version   GIF version

Theorem int0el 4932
Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
int0el (∅ ∈ 𝐴 𝐴 = ∅)

Proof of Theorem int0el
StepHypRef Expression
1 intss1 4916 . 2 (∅ ∈ 𝐴 𝐴 ⊆ ∅)
2 0ss 4353 . . 3 ∅ ⊆ 𝐴
32a1i 11 . 2 (∅ ∈ 𝐴 → ∅ ⊆ 𝐴)
41, 3eqssd 3955 1 (∅ ∈ 𝐴 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3905  c0 4286   cint 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-dif 3908  df-ss 3922  df-nul 4287  df-int 4900
This theorem is referenced by:  intv  5306  inton  6370  onint0  7731  oev2  8448  cuteq0  27764  ipolub00  48978
  Copyright terms: Public domain W3C validator