MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  int0el Structured version   Visualization version   GIF version

Theorem int0el 4907
Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
int0el (∅ ∈ 𝐴 𝐴 = ∅)

Proof of Theorem int0el
StepHypRef Expression
1 intss1 4891 . 2 (∅ ∈ 𝐴 𝐴 ⊆ ∅)
2 0ss 4327 . . 3 ∅ ⊆ 𝐴
32a1i 11 . 2 (∅ ∈ 𝐴 → ∅ ⊆ 𝐴)
41, 3eqssd 3934 1 (∅ ∈ 𝐴 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  c0 4253   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-int 4877
This theorem is referenced by:  intv  5281  inton  6308  onint0  7618  oev2  8315  ipolub00  46167
  Copyright terms: Public domain W3C validator