| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > int0el | Structured version Visualization version GIF version | ||
| Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| int0el | ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 4913 | . 2 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 ⊆ ∅) | |
| 2 | 0ss 4350 | . . 3 ⊢ ∅ ⊆ ∩ 𝐴 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (∅ ∈ 𝐴 → ∅ ⊆ ∩ 𝐴) |
| 4 | 1, 3 | eqssd 3952 | 1 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∅c0 4283 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 df-nul 4284 df-int 4898 |
| This theorem is referenced by: intv 5302 inton 6365 onint0 7724 oev2 8438 cuteq0 27774 ipolub00 49023 |
| Copyright terms: Public domain | W3C validator |