![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > int0el | Structured version Visualization version GIF version |
Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
int0el | ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 4987 | . 2 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 ⊆ ∅) | |
2 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ ∩ 𝐴 | |
3 | 2 | a1i 11 | . 2 ⊢ (∅ ∈ 𝐴 → ∅ ⊆ ∩ 𝐴) |
4 | 1, 3 | eqssd 4026 | 1 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-int 4971 |
This theorem is referenced by: intv 5382 inton 6453 onint0 7827 oev2 8579 cuteq0 27895 ipolub00 48665 |
Copyright terms: Public domain | W3C validator |