MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnwelem Structured version   Visualization version   GIF version

Theorem fnwelem 8067
Description: Lemma for fnwe 8068. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
fnwe.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
fnwe.2 (𝜑𝐹:𝐴𝐵)
fnwe.3 (𝜑𝑅 We 𝐵)
fnwe.4 (𝜑𝑆 We 𝐴)
fnwe.5 (𝜑 → (𝐹𝑤) ∈ V)
fnwelem.6 𝑄 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))}
fnwelem.7 𝐺 = (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩)
Assertion
Ref Expression
fnwelem (𝜑𝑇 We 𝐴)
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑤,𝑥,𝑦,𝑧   𝑤,𝐺,𝑥,𝑦   𝜑,𝑤,𝑥,𝑧   𝑢,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧   𝑤,𝑄,𝑥,𝑦   𝑢,𝑅,𝑣,𝑤,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑣,𝑢)   𝑄(𝑧,𝑣,𝑢)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧,𝑣,𝑢)   𝐺(𝑧,𝑣,𝑢)

Proof of Theorem fnwelem
StepHypRef Expression
1 fnwe.2 . . . 4 (𝜑𝐹:𝐴𝐵)
2 ffvelcdm 7020 . . . . . 6 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
3 simpr 484 . . . . . 6 ((𝐹:𝐴𝐵𝑧𝐴) → 𝑧𝐴)
42, 3opelxpd 5658 . . . . 5 ((𝐹:𝐴𝐵𝑧𝐴) → ⟨(𝐹𝑧), 𝑧⟩ ∈ (𝐵 × 𝐴))
5 fnwelem.7 . . . . 5 𝐺 = (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩)
64, 5fmptd 7053 . . . 4 (𝐹:𝐴𝐵𝐺:𝐴⟶(𝐵 × 𝐴))
7 frn 6663 . . . 4 (𝐺:𝐴⟶(𝐵 × 𝐴) → ran 𝐺 ⊆ (𝐵 × 𝐴))
81, 6, 73syl 18 . . 3 (𝜑 → ran 𝐺 ⊆ (𝐵 × 𝐴))
9 fnwe.3 . . . 4 (𝜑𝑅 We 𝐵)
10 fnwe.4 . . . 4 (𝜑𝑆 We 𝐴)
11 fnwelem.6 . . . . 5 𝑄 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))}
1211wexp 8066 . . . 4 ((𝑅 We 𝐵𝑆 We 𝐴) → 𝑄 We (𝐵 × 𝐴))
139, 10, 12syl2anc 584 . . 3 (𝜑𝑄 We (𝐵 × 𝐴))
14 wess 5605 . . 3 (ran 𝐺 ⊆ (𝐵 × 𝐴) → (𝑄 We (𝐵 × 𝐴) → 𝑄 We ran 𝐺))
158, 13, 14sylc 65 . 2 (𝜑𝑄 We ran 𝐺)
16 fveq2 6828 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
17 id 22 . . . . . . . . . . . 12 (𝑧 = 𝑥𝑧 = 𝑥)
1816, 17opeq12d 4832 . . . . . . . . . . 11 (𝑧 = 𝑥 → ⟨(𝐹𝑧), 𝑧⟩ = ⟨(𝐹𝑥), 𝑥⟩)
19 opex 5407 . . . . . . . . . . 11 ⟨(𝐹𝑥), 𝑥⟩ ∈ V
2018, 5, 19fvmpt 6935 . . . . . . . . . 10 (𝑥𝐴 → (𝐺𝑥) = ⟨(𝐹𝑥), 𝑥⟩)
21 fveq2 6828 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
22 id 22 . . . . . . . . . . . 12 (𝑧 = 𝑦𝑧 = 𝑦)
2321, 22opeq12d 4832 . . . . . . . . . . 11 (𝑧 = 𝑦 → ⟨(𝐹𝑧), 𝑧⟩ = ⟨(𝐹𝑦), 𝑦⟩)
24 opex 5407 . . . . . . . . . . 11 ⟨(𝐹𝑦), 𝑦⟩ ∈ V
2523, 5, 24fvmpt 6935 . . . . . . . . . 10 (𝑦𝐴 → (𝐺𝑦) = ⟨(𝐹𝑦), 𝑦⟩)
2620, 25eqeqan12d 2747 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) → ((𝐺𝑥) = (𝐺𝑦) ↔ ⟨(𝐹𝑥), 𝑥⟩ = ⟨(𝐹𝑦), 𝑦⟩))
27 fvex 6841 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
28 vex 3441 . . . . . . . . . . 11 𝑥 ∈ V
2927, 28opth 5419 . . . . . . . . . 10 (⟨(𝐹𝑥), 𝑥⟩ = ⟨(𝐹𝑦), 𝑦⟩ ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 = 𝑦))
3029simprbi 496 . . . . . . . . 9 (⟨(𝐹𝑥), 𝑥⟩ = ⟨(𝐹𝑦), 𝑦⟩ → 𝑥 = 𝑦)
3126, 30biimtrdi 253 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
3231rgen2 3173 . . . . . . 7 𝑥𝐴𝑦𝐴 ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)
33 dff13 7194 . . . . . . 7 (𝐺:𝐴1-1→(𝐵 × 𝐴) ↔ (𝐺:𝐴⟶(𝐵 × 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
346, 32, 33sylanblrc 590 . . . . . 6 (𝐹:𝐴𝐵𝐺:𝐴1-1→(𝐵 × 𝐴))
35 f1f1orn 6779 . . . . . 6 (𝐺:𝐴1-1→(𝐵 × 𝐴) → 𝐺:𝐴1-1-onto→ran 𝐺)
36 f1ocnv 6780 . . . . . 6 (𝐺:𝐴1-1-onto→ran 𝐺𝐺:ran 𝐺1-1-onto𝐴)
371, 34, 35, 364syl 19 . . . . 5 (𝜑𝐺:ran 𝐺1-1-onto𝐴)
38 eqid 2733 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))}
3938f1oiso2 7292 . . . . . 6 (𝐺:ran 𝐺1-1-onto𝐴𝐺 Isom 𝑄, {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} (ran 𝐺, 𝐴))
40 fnwe.1 . . . . . . . 8 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
41 frel 6661 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶(𝐵 × 𝐴) → Rel 𝐺)
42 dfrel2 6141 . . . . . . . . . . . . . . . 16 (Rel 𝐺𝐺 = 𝐺)
4341, 42sylib 218 . . . . . . . . . . . . . . 15 (𝐺:𝐴⟶(𝐵 × 𝐴) → 𝐺 = 𝐺)
4443fveq1d 6830 . . . . . . . . . . . . . 14 (𝐺:𝐴⟶(𝐵 × 𝐴) → (𝐺𝑥) = (𝐺𝑥))
4543fveq1d 6830 . . . . . . . . . . . . . 14 (𝐺:𝐴⟶(𝐵 × 𝐴) → (𝐺𝑦) = (𝐺𝑦))
4644, 45breq12d 5106 . . . . . . . . . . . . 13 (𝐺:𝐴⟶(𝐵 × 𝐴) → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ (𝐺𝑥)𝑄(𝐺𝑦)))
476, 46syl 17 . . . . . . . . . . . 12 (𝐹:𝐴𝐵 → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ (𝐺𝑥)𝑄(𝐺𝑦)))
4847adantr 480 . . . . . . . . . . 11 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ (𝐺𝑥)𝑄(𝐺𝑦)))
4920, 25breqan12d 5109 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴) → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ ⟨(𝐹𝑥), 𝑥𝑄⟨(𝐹𝑦), 𝑦⟩))
5049adantl 481 . . . . . . . . . . 11 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ ⟨(𝐹𝑥), 𝑥𝑄⟨(𝐹𝑦), 𝑦⟩))
51 eleq1 2821 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (𝑢 ∈ (𝐵 × 𝐴) ↔ ⟨(𝐹𝑥), 𝑥⟩ ∈ (𝐵 × 𝐴)))
52 opelxp 5655 . . . . . . . . . . . . . . . 16 (⟨(𝐹𝑥), 𝑥⟩ ∈ (𝐵 × 𝐴) ↔ ((𝐹𝑥) ∈ 𝐵𝑥𝐴))
5351, 52bitrdi 287 . . . . . . . . . . . . . . 15 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (𝑢 ∈ (𝐵 × 𝐴) ↔ ((𝐹𝑥) ∈ 𝐵𝑥𝐴)))
5453anbi1d 631 . . . . . . . . . . . . . 14 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ↔ (((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴))))
5527, 28op1std 7937 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (1st𝑢) = (𝐹𝑥))
5655breq1d 5103 . . . . . . . . . . . . . . 15 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → ((1st𝑢)𝑅(1st𝑣) ↔ (𝐹𝑥)𝑅(1st𝑣)))
5755eqeq1d 2735 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → ((1st𝑢) = (1st𝑣) ↔ (𝐹𝑥) = (1st𝑣)))
5827, 28op2ndd 7938 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (2nd𝑢) = 𝑥)
5958breq1d 5103 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → ((2nd𝑢)𝑆(2nd𝑣) ↔ 𝑥𝑆(2nd𝑣)))
6057, 59anbi12d 632 . . . . . . . . . . . . . . 15 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣)) ↔ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣))))
6156, 60orbi12d 918 . . . . . . . . . . . . . 14 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))) ↔ ((𝐹𝑥)𝑅(1st𝑣) ∨ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣)))))
6254, 61anbi12d 632 . . . . . . . . . . . . 13 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣)))) ↔ ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((𝐹𝑥)𝑅(1st𝑣) ∨ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣))))))
63 eleq1 2821 . . . . . . . . . . . . . . . 16 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (𝑣 ∈ (𝐵 × 𝐴) ↔ ⟨(𝐹𝑦), 𝑦⟩ ∈ (𝐵 × 𝐴)))
64 opelxp 5655 . . . . . . . . . . . . . . . 16 (⟨(𝐹𝑦), 𝑦⟩ ∈ (𝐵 × 𝐴) ↔ ((𝐹𝑦) ∈ 𝐵𝑦𝐴))
6563, 64bitrdi 287 . . . . . . . . . . . . . . 15 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (𝑣 ∈ (𝐵 × 𝐴) ↔ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)))
6665anbi2d 630 . . . . . . . . . . . . . 14 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ↔ (((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴))))
67 fvex 6841 . . . . . . . . . . . . . . . . 17 (𝐹𝑦) ∈ V
68 vex 3441 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
6967, 68op1std 7937 . . . . . . . . . . . . . . . 16 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (1st𝑣) = (𝐹𝑦))
7069breq2d 5105 . . . . . . . . . . . . . . 15 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → ((𝐹𝑥)𝑅(1st𝑣) ↔ (𝐹𝑥)𝑅(𝐹𝑦)))
7169eqeq2d 2744 . . . . . . . . . . . . . . . 16 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → ((𝐹𝑥) = (1st𝑣) ↔ (𝐹𝑥) = (𝐹𝑦)))
7267, 68op2ndd 7938 . . . . . . . . . . . . . . . . 17 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (2nd𝑣) = 𝑦)
7372breq2d 5105 . . . . . . . . . . . . . . . 16 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (𝑥𝑆(2nd𝑣) ↔ 𝑥𝑆𝑦))
7471, 73anbi12d 632 . . . . . . . . . . . . . . 15 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣)) ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))
7570, 74orbi12d 918 . . . . . . . . . . . . . 14 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (((𝐹𝑥)𝑅(1st𝑣) ∨ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣))) ↔ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦))))
7666, 75anbi12d 632 . . . . . . . . . . . . 13 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((𝐹𝑥)𝑅(1st𝑣) ∨ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣)))) ↔ ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))))
7719, 24, 62, 76, 11brab 5486 . . . . . . . . . . . 12 (⟨(𝐹𝑥), 𝑥𝑄⟨(𝐹𝑦), 𝑦⟩ ↔ ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦))))
78 ffvelcdm 7020 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
79 simpr 484 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐴)
8078, 79jca 511 . . . . . . . . . . . . . 14 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐹𝑥) ∈ 𝐵𝑥𝐴))
81 ffvelcdm 7020 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
82 simpr 484 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝑦𝐴) → 𝑦𝐴)
8381, 82jca 511 . . . . . . . . . . . . . 14 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐹𝑦) ∈ 𝐵𝑦𝐴))
8480, 83anim12dan 619 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)))
8584biantrurd 532 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)) ↔ ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))))
8677, 85bitr4id 290 . . . . . . . . . . 11 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (⟨(𝐹𝑥), 𝑥𝑄⟨(𝐹𝑦), 𝑦⟩ ↔ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦))))
8748, 50, 863bitrrd 306 . . . . . . . . . 10 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)) ↔ (𝐺𝑥)𝑄(𝐺𝑦)))
8887pm5.32da 579 . . . . . . . . 9 (𝐹:𝐴𝐵 → (((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦))) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))))
8988opabbidv 5159 . . . . . . . 8 (𝐹:𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))})
9040, 89eqtrid 2780 . . . . . . 7 (𝐹:𝐴𝐵𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))})
91 isoeq3 7259 . . . . . . 7 (𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} → (𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴) ↔ 𝐺 Isom 𝑄, {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} (ran 𝐺, 𝐴)))
9290, 91syl 17 . . . . . 6 (𝐹:𝐴𝐵 → (𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴) ↔ 𝐺 Isom 𝑄, {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} (ran 𝐺, 𝐴)))
9339, 92imbitrrid 246 . . . . 5 (𝐹:𝐴𝐵 → (𝐺:ran 𝐺1-1-onto𝐴𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴)))
941, 37, 93sylc 65 . . . 4 (𝜑𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴))
95 isocnv 7270 . . . 4 (𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴) → 𝐺 Isom 𝑇, 𝑄 (𝐴, ran 𝐺))
9694, 95syl 17 . . 3 (𝜑𝐺 Isom 𝑇, 𝑄 (𝐴, ran 𝐺))
97 imacnvcnv 6158 . . . . 5 (𝐺𝑤) = (𝐺𝑤)
98 fnwe.5 . . . . . . 7 (𝜑 → (𝐹𝑤) ∈ V)
99 vex 3441 . . . . . . 7 𝑤 ∈ V
100 xpexg 7689 . . . . . . 7 (((𝐹𝑤) ∈ V ∧ 𝑤 ∈ V) → ((𝐹𝑤) × 𝑤) ∈ V)
10198, 99, 100sylancl 586 . . . . . 6 (𝜑 → ((𝐹𝑤) × 𝑤) ∈ V)
102 imadmres 6186 . . . . . . 7 (𝐺 “ dom (𝐺𝑤)) = (𝐺𝑤)
103 dmres 5965 . . . . . . . . . . 11 dom (𝐺𝑤) = (𝑤 ∩ dom 𝐺)
104103elin2 4152 . . . . . . . . . 10 (𝑥 ∈ dom (𝐺𝑤) ↔ (𝑥𝑤𝑥 ∈ dom 𝐺))
105 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥 ∈ dom 𝐺)
106 f1dm 6728 . . . . . . . . . . . . . . 15 (𝐺:𝐴1-1→(𝐵 × 𝐴) → dom 𝐺 = 𝐴)
1071, 34, 1063syl 18 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐺 = 𝐴)
108107adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → dom 𝐺 = 𝐴)
109105, 108eleqtrd 2835 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥𝐴)
110109, 20syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝐺𝑥) = ⟨(𝐹𝑥), 𝑥⟩)
1111ffnd 6657 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐴)
112111adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝐹 Fn 𝐴)
113 dmres 5965 . . . . . . . . . . . . . . 15 dom (𝐹𝑤) = (𝑤 ∩ dom 𝐹)
114 inss2 4187 . . . . . . . . . . . . . . . 16 (𝑤 ∩ dom 𝐹) ⊆ dom 𝐹
115112fndmd 6591 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → dom 𝐹 = 𝐴)
116114, 115sseqtrid 3973 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝑤 ∩ dom 𝐹) ⊆ 𝐴)
117113, 116eqsstrid 3969 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → dom (𝐹𝑤) ⊆ 𝐴)
118 simprl 770 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥𝑤)
119109, 115eleqtrrd 2836 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥 ∈ dom 𝐹)
120113elin2 4152 . . . . . . . . . . . . . . 15 (𝑥 ∈ dom (𝐹𝑤) ↔ (𝑥𝑤𝑥 ∈ dom 𝐹))
121118, 119, 120sylanbrc 583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥 ∈ dom (𝐹𝑤))
122 fnfvima 7173 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴 ∧ dom (𝐹𝑤) ⊆ 𝐴𝑥 ∈ dom (𝐹𝑤)) → (𝐹𝑥) ∈ (𝐹 “ dom (𝐹𝑤)))
123112, 117, 121, 122syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝐹𝑥) ∈ (𝐹 “ dom (𝐹𝑤)))
124 imadmres 6186 . . . . . . . . . . . . 13 (𝐹 “ dom (𝐹𝑤)) = (𝐹𝑤)
125123, 124eleqtrdi 2843 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝐹𝑥) ∈ (𝐹𝑤))
126125, 118opelxpd 5658 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → ⟨(𝐹𝑥), 𝑥⟩ ∈ ((𝐹𝑤) × 𝑤))
127110, 126eqeltrd 2833 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤))
128104, 127sylan2b 594 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐺𝑤)) → (𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤))
129128ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ dom (𝐺𝑤)(𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤))
130 f1fun 6726 . . . . . . . . . 10 (𝐺:𝐴1-1→(𝐵 × 𝐴) → Fun 𝐺)
1311, 34, 1303syl 18 . . . . . . . . 9 (𝜑 → Fun 𝐺)
132 resss 5954 . . . . . . . . . 10 (𝐺𝑤) ⊆ 𝐺
133 dmss 5846 . . . . . . . . . 10 ((𝐺𝑤) ⊆ 𝐺 → dom (𝐺𝑤) ⊆ dom 𝐺)
134132, 133ax-mp 5 . . . . . . . . 9 dom (𝐺𝑤) ⊆ dom 𝐺
135 funimass4 6892 . . . . . . . . 9 ((Fun 𝐺 ∧ dom (𝐺𝑤) ⊆ dom 𝐺) → ((𝐺 “ dom (𝐺𝑤)) ⊆ ((𝐹𝑤) × 𝑤) ↔ ∀𝑥 ∈ dom (𝐺𝑤)(𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤)))
136131, 134, 135sylancl 586 . . . . . . . 8 (𝜑 → ((𝐺 “ dom (𝐺𝑤)) ⊆ ((𝐹𝑤) × 𝑤) ↔ ∀𝑥 ∈ dom (𝐺𝑤)(𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤)))
137129, 136mpbird 257 . . . . . . 7 (𝜑 → (𝐺 “ dom (𝐺𝑤)) ⊆ ((𝐹𝑤) × 𝑤))
138102, 137eqsstrrid 3970 . . . . . 6 (𝜑 → (𝐺𝑤) ⊆ ((𝐹𝑤) × 𝑤))
139101, 138ssexd 5264 . . . . 5 (𝜑 → (𝐺𝑤) ∈ V)
14097, 139eqeltrid 2837 . . . 4 (𝜑 → (𝐺𝑤) ∈ V)
141140alrimiv 1928 . . 3 (𝜑 → ∀𝑤(𝐺𝑤) ∈ V)
142 isowe2 7290 . . 3 ((𝐺 Isom 𝑇, 𝑄 (𝐴, ran 𝐺) ∧ ∀𝑤(𝐺𝑤) ∈ V) → (𝑄 We ran 𝐺𝑇 We 𝐴))
14396, 141, 142syl2anc 584 . 2 (𝜑 → (𝑄 We ran 𝐺𝑇 We 𝐴))
14415, 143mpd 15 1 (𝜑𝑇 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1539   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cin 3897  wss 3898  cop 4581   class class class wbr 5093  {copab 5155  cmpt 5174   We wwe 5571   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Rel wrel 5624  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486   Isom wiso 6487  1st c1st 7925  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-1st 7927  df-2nd 7928
This theorem is referenced by:  fnwe  8068
  Copyright terms: Public domain W3C validator