Proof of Theorem fnwelem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fnwe.2 | . . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| 2 |  | ffvelcdm 7101 | . . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) | 
| 3 |  | simpr 484 | . . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | 
| 4 | 2, 3 | opelxpd 5724 | . . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), 𝑧〉 ∈ (𝐵 × 𝐴)) | 
| 5 |  | fnwelem.7 | . . . . 5
⊢ 𝐺 = (𝑧 ∈ 𝐴 ↦ 〈(𝐹‘𝑧), 𝑧〉) | 
| 6 | 4, 5 | fmptd 7134 | . . . 4
⊢ (𝐹:𝐴⟶𝐵 → 𝐺:𝐴⟶(𝐵 × 𝐴)) | 
| 7 |  | frn 6743 | . . . 4
⊢ (𝐺:𝐴⟶(𝐵 × 𝐴) → ran 𝐺 ⊆ (𝐵 × 𝐴)) | 
| 8 | 1, 6, 7 | 3syl 18 | . . 3
⊢ (𝜑 → ran 𝐺 ⊆ (𝐵 × 𝐴)) | 
| 9 |  | fnwe.3 | . . . 4
⊢ (𝜑 → 𝑅 We 𝐵) | 
| 10 |  | fnwe.4 | . . . 4
⊢ (𝜑 → 𝑆 We 𝐴) | 
| 11 |  | fnwelem.6 | . . . . 5
⊢ 𝑄 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd
‘𝑢)𝑆(2nd ‘𝑣))))} | 
| 12 | 11 | wexp 8155 | . . . 4
⊢ ((𝑅 We 𝐵 ∧ 𝑆 We 𝐴) → 𝑄 We (𝐵 × 𝐴)) | 
| 13 | 9, 10, 12 | syl2anc 584 | . . 3
⊢ (𝜑 → 𝑄 We (𝐵 × 𝐴)) | 
| 14 |  | wess 5671 | . . 3
⊢ (ran
𝐺 ⊆ (𝐵 × 𝐴) → (𝑄 We (𝐵 × 𝐴) → 𝑄 We ran 𝐺)) | 
| 15 | 8, 13, 14 | sylc 65 | . 2
⊢ (𝜑 → 𝑄 We ran 𝐺) | 
| 16 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | 
| 17 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) | 
| 18 | 16, 17 | opeq12d 4881 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 〈(𝐹‘𝑧), 𝑧〉 = 〈(𝐹‘𝑥), 𝑥〉) | 
| 19 |  | opex 5469 | . . . . . . . . . . 11
⊢
〈(𝐹‘𝑥), 𝑥〉 ∈ V | 
| 20 | 18, 5, 19 | fvmpt 7016 | . . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (𝐺‘𝑥) = 〈(𝐹‘𝑥), 𝑥〉) | 
| 21 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) | 
| 22 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | 
| 23 | 21, 22 | opeq12d 4881 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → 〈(𝐹‘𝑧), 𝑧〉 = 〈(𝐹‘𝑦), 𝑦〉) | 
| 24 |  | opex 5469 | . . . . . . . . . . 11
⊢
〈(𝐹‘𝑦), 𝑦〉 ∈ V | 
| 25 | 23, 5, 24 | fvmpt 7016 | . . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (𝐺‘𝑦) = 〈(𝐹‘𝑦), 𝑦〉) | 
| 26 | 20, 25 | eqeqan12d 2751 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐺‘𝑥) = (𝐺‘𝑦) ↔ 〈(𝐹‘𝑥), 𝑥〉 = 〈(𝐹‘𝑦), 𝑦〉)) | 
| 27 |  | fvex 6919 | . . . . . . . . . . 11
⊢ (𝐹‘𝑥) ∈ V | 
| 28 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑥 ∈ V | 
| 29 | 27, 28 | opth 5481 | . . . . . . . . . 10
⊢
(〈(𝐹‘𝑥), 𝑥〉 = 〈(𝐹‘𝑦), 𝑦〉 ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 = 𝑦)) | 
| 30 | 29 | simprbi 496 | . . . . . . . . 9
⊢
(〈(𝐹‘𝑥), 𝑥〉 = 〈(𝐹‘𝑦), 𝑦〉 → 𝑥 = 𝑦) | 
| 31 | 26, 30 | biimtrdi 253 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐺‘𝑥) = (𝐺‘𝑦) → 𝑥 = 𝑦)) | 
| 32 | 31 | rgen2 3199 | . . . . . . 7
⊢
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝐺‘𝑥) = (𝐺‘𝑦) → 𝑥 = 𝑦) | 
| 33 |  | dff13 7275 | . . . . . . 7
⊢ (𝐺:𝐴–1-1→(𝐵 × 𝐴) ↔ (𝐺:𝐴⟶(𝐵 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐺‘𝑥) = (𝐺‘𝑦) → 𝑥 = 𝑦))) | 
| 34 | 6, 32, 33 | sylanblrc 590 | . . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → 𝐺:𝐴–1-1→(𝐵 × 𝐴)) | 
| 35 |  | f1f1orn 6859 | . . . . . 6
⊢ (𝐺:𝐴–1-1→(𝐵 × 𝐴) → 𝐺:𝐴–1-1-onto→ran
𝐺) | 
| 36 |  | f1ocnv 6860 | . . . . . 6
⊢ (𝐺:𝐴–1-1-onto→ran
𝐺 → ◡𝐺:ran 𝐺–1-1-onto→𝐴) | 
| 37 | 1, 34, 35, 36 | 4syl 19 | . . . . 5
⊢ (𝜑 → ◡𝐺:ran 𝐺–1-1-onto→𝐴) | 
| 38 |  | eqid 2737 | . . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦))} | 
| 39 | 38 | f1oiso2 7372 | . . . . . 6
⊢ (◡𝐺:ran 𝐺–1-1-onto→𝐴 → ◡𝐺 Isom 𝑄, {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦))} (ran 𝐺, 𝐴)) | 
| 40 |  | fnwe.1 | . . . . . . . 8
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} | 
| 41 |  | frel 6741 | . . . . . . . . . . . . . . . 16
⊢ (𝐺:𝐴⟶(𝐵 × 𝐴) → Rel 𝐺) | 
| 42 |  | dfrel2 6209 | . . . . . . . . . . . . . . . 16
⊢ (Rel
𝐺 ↔ ◡◡𝐺 = 𝐺) | 
| 43 | 41, 42 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (𝐺:𝐴⟶(𝐵 × 𝐴) → ◡◡𝐺 = 𝐺) | 
| 44 | 43 | fveq1d 6908 | . . . . . . . . . . . . . 14
⊢ (𝐺:𝐴⟶(𝐵 × 𝐴) → (◡◡𝐺‘𝑥) = (𝐺‘𝑥)) | 
| 45 | 43 | fveq1d 6908 | . . . . . . . . . . . . . 14
⊢ (𝐺:𝐴⟶(𝐵 × 𝐴) → (◡◡𝐺‘𝑦) = (𝐺‘𝑦)) | 
| 46 | 44, 45 | breq12d 5156 | . . . . . . . . . . . . 13
⊢ (𝐺:𝐴⟶(𝐵 × 𝐴) → ((◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦) ↔ (𝐺‘𝑥)𝑄(𝐺‘𝑦))) | 
| 47 | 6, 46 | syl 17 | . . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶𝐵 → ((◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦) ↔ (𝐺‘𝑥)𝑄(𝐺‘𝑦))) | 
| 48 | 47 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦) ↔ (𝐺‘𝑥)𝑄(𝐺‘𝑦))) | 
| 49 | 20, 25 | breqan12d 5159 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐺‘𝑥)𝑄(𝐺‘𝑦) ↔ 〈(𝐹‘𝑥), 𝑥〉𝑄〈(𝐹‘𝑦), 𝑦〉)) | 
| 50 | 49 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐺‘𝑥)𝑄(𝐺‘𝑦) ↔ 〈(𝐹‘𝑥), 𝑥〉𝑄〈(𝐹‘𝑦), 𝑦〉)) | 
| 51 |  | eleq1 2829 | . . . . . . . . . . . . . . . 16
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → (𝑢 ∈ (𝐵 × 𝐴) ↔ 〈(𝐹‘𝑥), 𝑥〉 ∈ (𝐵 × 𝐴))) | 
| 52 |  | opelxp 5721 | . . . . . . . . . . . . . . . 16
⊢
(〈(𝐹‘𝑥), 𝑥〉 ∈ (𝐵 × 𝐴) ↔ ((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | 
| 53 | 51, 52 | bitrdi 287 | . . . . . . . . . . . . . . 15
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → (𝑢 ∈ (𝐵 × 𝐴) ↔ ((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) | 
| 54 | 53 | anbi1d 631 | . . . . . . . . . . . . . 14
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ↔ (((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)))) | 
| 55 | 27, 28 | op1std 8024 | . . . . . . . . . . . . . . . 16
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → (1st ‘𝑢) = (𝐹‘𝑥)) | 
| 56 | 55 | breq1d 5153 | . . . . . . . . . . . . . . 15
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → ((1st ‘𝑢)𝑅(1st ‘𝑣) ↔ (𝐹‘𝑥)𝑅(1st ‘𝑣))) | 
| 57 | 55 | eqeq1d 2739 | . . . . . . . . . . . . . . . 16
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → ((1st ‘𝑢) = (1st ‘𝑣) ↔ (𝐹‘𝑥) = (1st ‘𝑣))) | 
| 58 | 27, 28 | op2ndd 8025 | . . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → (2nd ‘𝑢) = 𝑥) | 
| 59 | 58 | breq1d 5153 | . . . . . . . . . . . . . . . 16
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → ((2nd ‘𝑢)𝑆(2nd ‘𝑣) ↔ 𝑥𝑆(2nd ‘𝑣))) | 
| 60 | 57, 59 | anbi12d 632 | . . . . . . . . . . . . . . 15
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → (((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd
‘𝑢)𝑆(2nd ‘𝑣)) ↔ ((𝐹‘𝑥) = (1st ‘𝑣) ∧ 𝑥𝑆(2nd ‘𝑣)))) | 
| 61 | 56, 60 | orbi12d 919 | . . . . . . . . . . . . . 14
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → (((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd
‘𝑢)𝑆(2nd ‘𝑣))) ↔ ((𝐹‘𝑥)𝑅(1st ‘𝑣) ∨ ((𝐹‘𝑥) = (1st ‘𝑣) ∧ 𝑥𝑆(2nd ‘𝑣))))) | 
| 62 | 54, 61 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ (𝑢 = 〈(𝐹‘𝑥), 𝑥〉 → (((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd
‘𝑢)𝑆(2nd ‘𝑣)))) ↔ ((((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((𝐹‘𝑥)𝑅(1st ‘𝑣) ∨ ((𝐹‘𝑥) = (1st ‘𝑣) ∧ 𝑥𝑆(2nd ‘𝑣)))))) | 
| 63 |  | eleq1 2829 | . . . . . . . . . . . . . . . 16
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → (𝑣 ∈ (𝐵 × 𝐴) ↔ 〈(𝐹‘𝑦), 𝑦〉 ∈ (𝐵 × 𝐴))) | 
| 64 |  | opelxp 5721 | . . . . . . . . . . . . . . . 16
⊢
(〈(𝐹‘𝑦), 𝑦〉 ∈ (𝐵 × 𝐴) ↔ ((𝐹‘𝑦) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | 
| 65 | 63, 64 | bitrdi 287 | . . . . . . . . . . . . . . 15
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → (𝑣 ∈ (𝐵 × 𝐴) ↔ ((𝐹‘𝑦) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴))) | 
| 66 | 65 | anbi2d 630 | . . . . . . . . . . . . . 14
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → ((((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ↔ (((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ((𝐹‘𝑦) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)))) | 
| 67 |  | fvex 6919 | . . . . . . . . . . . . . . . . 17
⊢ (𝐹‘𝑦) ∈ V | 
| 68 |  | vex 3484 | . . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V | 
| 69 | 67, 68 | op1std 8024 | . . . . . . . . . . . . . . . 16
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → (1st ‘𝑣) = (𝐹‘𝑦)) | 
| 70 | 69 | breq2d 5155 | . . . . . . . . . . . . . . 15
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → ((𝐹‘𝑥)𝑅(1st ‘𝑣) ↔ (𝐹‘𝑥)𝑅(𝐹‘𝑦))) | 
| 71 | 69 | eqeq2d 2748 | . . . . . . . . . . . . . . . 16
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → ((𝐹‘𝑥) = (1st ‘𝑣) ↔ (𝐹‘𝑥) = (𝐹‘𝑦))) | 
| 72 | 67, 68 | op2ndd 8025 | . . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → (2nd ‘𝑣) = 𝑦) | 
| 73 | 72 | breq2d 5155 | . . . . . . . . . . . . . . . 16
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → (𝑥𝑆(2nd ‘𝑣) ↔ 𝑥𝑆𝑦)) | 
| 74 | 71, 73 | anbi12d 632 | . . . . . . . . . . . . . . 15
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → (((𝐹‘𝑥) = (1st ‘𝑣) ∧ 𝑥𝑆(2nd ‘𝑣)) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦))) | 
| 75 | 70, 74 | orbi12d 919 | . . . . . . . . . . . . . 14
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → (((𝐹‘𝑥)𝑅(1st ‘𝑣) ∨ ((𝐹‘𝑥) = (1st ‘𝑣) ∧ 𝑥𝑆(2nd ‘𝑣))) ↔ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))) | 
| 76 | 66, 75 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ (𝑣 = 〈(𝐹‘𝑦), 𝑦〉 → (((((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((𝐹‘𝑥)𝑅(1st ‘𝑣) ∨ ((𝐹‘𝑥) = (1st ‘𝑣) ∧ 𝑥𝑆(2nd ‘𝑣)))) ↔ ((((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ((𝐹‘𝑦) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦))))) | 
| 77 | 19, 24, 62, 76, 11 | brab 5548 | . . . . . . . . . . . 12
⊢
(〈(𝐹‘𝑥), 𝑥〉𝑄〈(𝐹‘𝑦), 𝑦〉 ↔ ((((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ((𝐹‘𝑦) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))) | 
| 78 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | 
| 79 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | 
| 80 | 78, 79 | jca 511 | . . . . . . . . . . . . . 14
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | 
| 81 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐵) | 
| 82 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | 
| 83 | 81, 82 | jca 511 | . . . . . . . . . . . . . 14
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑦) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | 
| 84 | 80, 83 | anim12dan 619 | . . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ((𝐹‘𝑦) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴))) | 
| 85 | 84 | biantrurd 532 | . . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)) ↔ ((((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ((𝐹‘𝑦) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦))))) | 
| 86 | 77, 85 | bitr4id 290 | . . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (〈(𝐹‘𝑥), 𝑥〉𝑄〈(𝐹‘𝑦), 𝑦〉 ↔ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))) | 
| 87 | 48, 50, 86 | 3bitrrd 306 | . . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)) ↔ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦))) | 
| 88 | 87 | pm5.32da 579 | . . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦))) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦)))) | 
| 89 | 88 | opabbidv 5209 | . . . . . . . 8
⊢ (𝐹:𝐴⟶𝐵 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦))}) | 
| 90 | 40, 89 | eqtrid 2789 | . . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦))}) | 
| 91 |  | isoeq3 7339 | . . . . . . 7
⊢ (𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦))} → (◡𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴) ↔ ◡𝐺 Isom 𝑄, {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦))} (ran 𝐺, 𝐴))) | 
| 92 | 90, 91 | syl 17 | . . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → (◡𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴) ↔ ◡𝐺 Isom 𝑄, {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (◡◡𝐺‘𝑥)𝑄(◡◡𝐺‘𝑦))} (ran 𝐺, 𝐴))) | 
| 93 | 39, 92 | imbitrrid 246 | . . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (◡𝐺:ran 𝐺–1-1-onto→𝐴 → ◡𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴))) | 
| 94 | 1, 37, 93 | sylc 65 | . . . 4
⊢ (𝜑 → ◡𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴)) | 
| 95 |  | isocnv 7350 | . . . 4
⊢ (◡𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴) → ◡◡𝐺 Isom 𝑇, 𝑄 (𝐴, ran 𝐺)) | 
| 96 | 94, 95 | syl 17 | . . 3
⊢ (𝜑 → ◡◡𝐺 Isom 𝑇, 𝑄 (𝐴, ran 𝐺)) | 
| 97 |  | imacnvcnv 6226 | . . . . 5
⊢ (◡◡𝐺 “ 𝑤) = (𝐺 “ 𝑤) | 
| 98 |  | fnwe.5 | . . . . . . 7
⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) | 
| 99 |  | vex 3484 | . . . . . . 7
⊢ 𝑤 ∈ V | 
| 100 |  | xpexg 7770 | . . . . . . 7
⊢ (((𝐹 “ 𝑤) ∈ V ∧ 𝑤 ∈ V) → ((𝐹 “ 𝑤) × 𝑤) ∈ V) | 
| 101 | 98, 99, 100 | sylancl 586 | . . . . . 6
⊢ (𝜑 → ((𝐹 “ 𝑤) × 𝑤) ∈ V) | 
| 102 |  | imadmres 6254 | . . . . . . 7
⊢ (𝐺 “ dom (𝐺 ↾ 𝑤)) = (𝐺 “ 𝑤) | 
| 103 |  | dmres 6030 | . . . . . . . . . . 11
⊢ dom
(𝐺 ↾ 𝑤) = (𝑤 ∩ dom 𝐺) | 
| 104 | 103 | elin2 4203 | . . . . . . . . . 10
⊢ (𝑥 ∈ dom (𝐺 ↾ 𝑤) ↔ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) | 
| 105 |  | simprr 773 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → 𝑥 ∈ dom 𝐺) | 
| 106 |  | f1dm 6808 | . . . . . . . . . . . . . . 15
⊢ (𝐺:𝐴–1-1→(𝐵 × 𝐴) → dom 𝐺 = 𝐴) | 
| 107 | 1, 34, 106 | 3syl 18 | . . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐺 = 𝐴) | 
| 108 | 107 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → dom 𝐺 = 𝐴) | 
| 109 | 105, 108 | eleqtrd 2843 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → 𝑥 ∈ 𝐴) | 
| 110 | 109, 20 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → (𝐺‘𝑥) = 〈(𝐹‘𝑥), 𝑥〉) | 
| 111 | 1 | ffnd 6737 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| 112 | 111 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → 𝐹 Fn 𝐴) | 
| 113 |  | dmres 6030 | . . . . . . . . . . . . . . 15
⊢ dom
(𝐹 ↾ 𝑤) = (𝑤 ∩ dom 𝐹) | 
| 114 |  | inss2 4238 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 ∩ dom 𝐹) ⊆ dom 𝐹 | 
| 115 | 112 | fndmd 6673 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → dom 𝐹 = 𝐴) | 
| 116 | 114, 115 | sseqtrid 4026 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → (𝑤 ∩ dom 𝐹) ⊆ 𝐴) | 
| 117 | 113, 116 | eqsstrid 4022 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → dom (𝐹 ↾ 𝑤) ⊆ 𝐴) | 
| 118 |  | simprl 771 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → 𝑥 ∈ 𝑤) | 
| 119 | 109, 115 | eleqtrrd 2844 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → 𝑥 ∈ dom 𝐹) | 
| 120 | 113 | elin2 4203 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ dom (𝐹 ↾ 𝑤) ↔ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐹)) | 
| 121 | 118, 119,
120 | sylanbrc 583 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → 𝑥 ∈ dom (𝐹 ↾ 𝑤)) | 
| 122 |  | fnfvima 7253 | . . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝐴 ∧ dom (𝐹 ↾ 𝑤) ⊆ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ↾ 𝑤)) → (𝐹‘𝑥) ∈ (𝐹 “ dom (𝐹 ↾ 𝑤))) | 
| 123 | 112, 117,
121, 122 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → (𝐹‘𝑥) ∈ (𝐹 “ dom (𝐹 ↾ 𝑤))) | 
| 124 |  | imadmres 6254 | . . . . . . . . . . . . 13
⊢ (𝐹 “ dom (𝐹 ↾ 𝑤)) = (𝐹 “ 𝑤) | 
| 125 | 123, 124 | eleqtrdi 2851 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → (𝐹‘𝑥) ∈ (𝐹 “ 𝑤)) | 
| 126 | 125, 118 | opelxpd 5724 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → 〈(𝐹‘𝑥), 𝑥〉 ∈ ((𝐹 “ 𝑤) × 𝑤)) | 
| 127 | 110, 126 | eqeltrd 2841 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺)) → (𝐺‘𝑥) ∈ ((𝐹 “ 𝑤) × 𝑤)) | 
| 128 | 104, 127 | sylan2b 594 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐺 ↾ 𝑤)) → (𝐺‘𝑥) ∈ ((𝐹 “ 𝑤) × 𝑤)) | 
| 129 | 128 | ralrimiva 3146 | . . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ dom (𝐺 ↾ 𝑤)(𝐺‘𝑥) ∈ ((𝐹 “ 𝑤) × 𝑤)) | 
| 130 |  | f1fun 6806 | . . . . . . . . . 10
⊢ (𝐺:𝐴–1-1→(𝐵 × 𝐴) → Fun 𝐺) | 
| 131 | 1, 34, 130 | 3syl 18 | . . . . . . . . 9
⊢ (𝜑 → Fun 𝐺) | 
| 132 |  | resss 6019 | . . . . . . . . . 10
⊢ (𝐺 ↾ 𝑤) ⊆ 𝐺 | 
| 133 |  | dmss 5913 | . . . . . . . . . 10
⊢ ((𝐺 ↾ 𝑤) ⊆ 𝐺 → dom (𝐺 ↾ 𝑤) ⊆ dom 𝐺) | 
| 134 | 132, 133 | ax-mp 5 | . . . . . . . . 9
⊢ dom
(𝐺 ↾ 𝑤) ⊆ dom 𝐺 | 
| 135 |  | funimass4 6973 | . . . . . . . . 9
⊢ ((Fun
𝐺 ∧ dom (𝐺 ↾ 𝑤) ⊆ dom 𝐺) → ((𝐺 “ dom (𝐺 ↾ 𝑤)) ⊆ ((𝐹 “ 𝑤) × 𝑤) ↔ ∀𝑥 ∈ dom (𝐺 ↾ 𝑤)(𝐺‘𝑥) ∈ ((𝐹 “ 𝑤) × 𝑤))) | 
| 136 | 131, 134,
135 | sylancl 586 | . . . . . . . 8
⊢ (𝜑 → ((𝐺 “ dom (𝐺 ↾ 𝑤)) ⊆ ((𝐹 “ 𝑤) × 𝑤) ↔ ∀𝑥 ∈ dom (𝐺 ↾ 𝑤)(𝐺‘𝑥) ∈ ((𝐹 “ 𝑤) × 𝑤))) | 
| 137 | 129, 136 | mpbird 257 | . . . . . . 7
⊢ (𝜑 → (𝐺 “ dom (𝐺 ↾ 𝑤)) ⊆ ((𝐹 “ 𝑤) × 𝑤)) | 
| 138 | 102, 137 | eqsstrrid 4023 | . . . . . 6
⊢ (𝜑 → (𝐺 “ 𝑤) ⊆ ((𝐹 “ 𝑤) × 𝑤)) | 
| 139 | 101, 138 | ssexd 5324 | . . . . 5
⊢ (𝜑 → (𝐺 “ 𝑤) ∈ V) | 
| 140 | 97, 139 | eqeltrid 2845 | . . . 4
⊢ (𝜑 → (◡◡𝐺 “ 𝑤) ∈ V) | 
| 141 | 140 | alrimiv 1927 | . . 3
⊢ (𝜑 → ∀𝑤(◡◡𝐺 “ 𝑤) ∈ V) | 
| 142 |  | isowe2 7370 | . . 3
⊢ ((◡◡𝐺 Isom 𝑇, 𝑄 (𝐴, ran 𝐺) ∧ ∀𝑤(◡◡𝐺 “ 𝑤) ∈ V) → (𝑄 We ran 𝐺 → 𝑇 We 𝐴)) | 
| 143 | 96, 141, 142 | syl2anc 584 | . 2
⊢ (𝜑 → (𝑄 We ran 𝐺 → 𝑇 We 𝐴)) | 
| 144 | 15, 143 | mpd 15 | 1
⊢ (𝜑 → 𝑇 We 𝐴) |