MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogslem1 Structured version   Visualization version   GIF version

Theorem hartogslem1 9582
Description: Lemma for hartogs 9584. (Contributed by Mario Carneiro, 14-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
hartogslem.2 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
hartogslem.3 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
Assertion
Ref Expression
hartogslem1 (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴}))
Distinct variable groups:   𝑓,𝑠,𝑡,𝑤,𝑦,𝑧   𝑓,𝑟,𝑥,𝐴,𝑦   𝑅,𝑟,𝑥   𝑉,𝑟,𝑦
Allowed substitution hints:   𝐴(𝑧,𝑤,𝑡,𝑠)   𝑅(𝑦,𝑧,𝑤,𝑡,𝑓,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑠,𝑟)   𝑉(𝑥,𝑧,𝑤,𝑡,𝑓,𝑠)

Proof of Theorem hartogslem1
StepHypRef Expression
1 hartogslem.2 . . . . 5 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
21dmeqi 5915 . . . 4 dom 𝐹 = dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
3 dmopab 5926 . . . 4 dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑟 ∣ ∃𝑦(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
42, 3eqtri 2765 . . 3 dom 𝐹 = {𝑟 ∣ ∃𝑦(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
5 simp3 1139 . . . . . . . 8 ((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → 𝑟 ⊆ (dom 𝑟 × dom 𝑟))
6 simp1 1137 . . . . . . . . 9 ((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → dom 𝑟𝐴)
7 xpss12 5700 . . . . . . . . 9 ((dom 𝑟𝐴 ∧ dom 𝑟𝐴) → (dom 𝑟 × dom 𝑟) ⊆ (𝐴 × 𝐴))
86, 6, 7syl2anc 584 . . . . . . . 8 ((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → (dom 𝑟 × dom 𝑟) ⊆ (𝐴 × 𝐴))
95, 8sstrd 3994 . . . . . . 7 ((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → 𝑟 ⊆ (𝐴 × 𝐴))
10 velpw 4605 . . . . . . 7 (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴))
119, 10sylibr 234 . . . . . 6 ((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴))
1211ad2antrr 726 . . . . 5 ((((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴))
1312exlimiv 1930 . . . 4 (∃𝑦(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴))
1413abssi 4070 . . 3 {𝑟 ∣ ∃𝑦(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝐴 × 𝐴)
154, 14eqsstri 4030 . 2 dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴)
16 funopab4 6603 . . 3 Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
171funeqi 6587 . . 3 (Fun 𝐹 ↔ Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
1816, 17mpbir 231 . 2 Fun 𝐹
191rneqi 5948 . . . 4 ran 𝐹 = ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
20 rnopab 5965 . . . 4 ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑦 ∣ ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
2119, 20eqtri 2765 . . 3 ran 𝐹 = {𝑦 ∣ ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
22 breq1 5146 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2322elrab 3692 . . . . 5 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
24 f1f 6804 . . . . . . . . . . . . 13 (𝑓:𝑦1-1𝐴𝑓:𝑦𝐴)
2524adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → 𝑓:𝑦𝐴)
2625frnd 6744 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ran 𝑓𝐴)
27 resss 6019 . . . . . . . . . . . . . 14 ( I ↾ ran 𝑓) ⊆ I
28 ssun2 4179 . . . . . . . . . . . . . 14 I ⊆ (𝑅 ∪ I )
2927, 28sstri 3993 . . . . . . . . . . . . 13 ( I ↾ ran 𝑓) ⊆ (𝑅 ∪ I )
30 idssxp 6067 . . . . . . . . . . . . 13 ( I ↾ ran 𝑓) ⊆ (ran 𝑓 × ran 𝑓)
3129, 30ssini 4240 . . . . . . . . . . . 12 ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓))
3231a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)))
33 inss2 4238 . . . . . . . . . . . 12 ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)
3433a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓))
3526, 32, 343jca 1129 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → (ran 𝑓𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)))
36 eloni 6394 . . . . . . . . . . . . . 14 (𝑦 ∈ On → Ord 𝑦)
37 ordwe 6397 . . . . . . . . . . . . . 14 (Ord 𝑦 → E We 𝑦)
3836, 37syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ On → E We 𝑦)
3938adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → E We 𝑦)
40 f1f1orn 6859 . . . . . . . . . . . . . . . 16 (𝑓:𝑦1-1𝐴𝑓:𝑦1-1-onto→ran 𝑓)
4140adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → 𝑓:𝑦1-1-onto→ran 𝑓)
42 hartogslem.3 . . . . . . . . . . . . . . 15 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
43 f1oiso 7371 . . . . . . . . . . . . . . 15 ((𝑓:𝑦1-1-onto→ran 𝑓𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}) → 𝑓 Isom E , 𝑅 (𝑦, ran 𝑓))
4441, 42, 43sylancl 586 . . . . . . . . . . . . . 14 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → 𝑓 Isom E , 𝑅 (𝑦, ran 𝑓))
45 isores2 7353 . . . . . . . . . . . . . 14 (𝑓 Isom E , 𝑅 (𝑦, ran 𝑓) ↔ 𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓))
4644, 45sylib 218 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → 𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓))
47 isowe 7369 . . . . . . . . . . . . 13 (𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓) → ( E We 𝑦 ↔ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓))
4846, 47syl 17 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ( E We 𝑦 ↔ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓))
4939, 48mpbid 232 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓)
50 weso 5676 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓 → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) Or ran 𝑓)
5149, 50syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) Or ran 𝑓)
52 inss2 4238 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)
5352brel 5750 . . . . . . . . . . . . . . . . . 18 (𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥 → (𝑥 ∈ ran 𝑓𝑥 ∈ ran 𝑓))
5453simpld 494 . . . . . . . . . . . . . . . . 17 (𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥𝑥 ∈ ran 𝑓)
55 sonr 5616 . . . . . . . . . . . . . . . . 17 (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) Or ran 𝑓𝑥 ∈ ran 𝑓) → ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥)
5651, 54, 55syl2an 596 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) ∧ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) → ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥)
5756pm2.01da 799 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥)
5857alrimiv 1927 . . . . . . . . . . . . . 14 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ∀𝑥 ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥)
59 intirr 6138 . . . . . . . . . . . . . 14 (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥)
6058, 59sylibr 234 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∩ I ) = ∅)
61 disj3 4454 . . . . . . . . . . . . 13 (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∩ I ) = ∅ ↔ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ))
6260, 61sylib 218 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ))
63 weeq1 5672 . . . . . . . . . . . 12 ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓))
6462, 63syl 17 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓))
6549, 64mpbid 232 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)
6636adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → Ord 𝑦)
67 isoeq3 7339 . . . . . . . . . . . . . 14 ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → (𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓) ↔ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)))
6862, 67syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → (𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓) ↔ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)))
6946, 68mpbid 232 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓))
70 vex 3484 . . . . . . . . . . . . . . 15 𝑓 ∈ V
7170rnex 7932 . . . . . . . . . . . . . 14 ran 𝑓 ∈ V
72 exse 5645 . . . . . . . . . . . . . 14 (ran 𝑓 ∈ V → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) Se ran 𝑓)
7371, 72ax-mp 5 . . . . . . . . . . . . 13 ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) Se ran 𝑓
74 eqid 2737 . . . . . . . . . . . . . 14 OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)
7574oieu 9579 . . . . . . . . . . . . 13 ((((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓 ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) Se ran 𝑓) → ((Ord 𝑦𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)) ↔ (𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) ∧ 𝑓 = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))))
7665, 73, 75sylancl 586 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ((Ord 𝑦𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)) ↔ (𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) ∧ 𝑓 = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))))
7766, 69, 76mpbi2and 712 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → (𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) ∧ 𝑓 = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)))
7877simpld 494 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))
7971, 71xpex 7773 . . . . . . . . . . . 12 (ran 𝑓 × ran 𝑓) ∈ V
8079inex2 5318 . . . . . . . . . . 11 ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∈ V
81 sseq1 4009 . . . . . . . . . . . . . . . . . . 19 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ⊆ (ran 𝑓 × ran 𝑓) ↔ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)))
8233, 81mpbiri 258 . . . . . . . . . . . . . . . . . 18 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → 𝑟 ⊆ (ran 𝑓 × ran 𝑓))
83 dmss 5913 . . . . . . . . . . . . . . . . . 18 (𝑟 ⊆ (ran 𝑓 × ran 𝑓) → dom 𝑟 ⊆ dom (ran 𝑓 × ran 𝑓))
8482, 83syl 17 . . . . . . . . . . . . . . . . 17 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom 𝑟 ⊆ dom (ran 𝑓 × ran 𝑓))
85 dmxpid 5941 . . . . . . . . . . . . . . . . 17 dom (ran 𝑓 × ran 𝑓) = ran 𝑓
8684, 85sseqtrdi 4024 . . . . . . . . . . . . . . . 16 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom 𝑟 ⊆ ran 𝑓)
87 dmresi 6070 . . . . . . . . . . . . . . . . 17 dom ( I ↾ ran 𝑓) = ran 𝑓
88 sseq2 4010 . . . . . . . . . . . . . . . . . . 19 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (( I ↾ ran 𝑓) ⊆ 𝑟 ↔ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓))))
8931, 88mpbiri 258 . . . . . . . . . . . . . . . . . 18 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ( I ↾ ran 𝑓) ⊆ 𝑟)
90 dmss 5913 . . . . . . . . . . . . . . . . . 18 (( I ↾ ran 𝑓) ⊆ 𝑟 → dom ( I ↾ ran 𝑓) ⊆ dom 𝑟)
9189, 90syl 17 . . . . . . . . . . . . . . . . 17 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom ( I ↾ ran 𝑓) ⊆ dom 𝑟)
9287, 91eqsstrrid 4023 . . . . . . . . . . . . . . . 16 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ran 𝑓 ⊆ dom 𝑟)
9386, 92eqssd 4001 . . . . . . . . . . . . . . 15 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom 𝑟 = ran 𝑓)
9493sseq1d 4015 . . . . . . . . . . . . . 14 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (dom 𝑟𝐴 ↔ ran 𝑓𝐴))
9593reseq2d 5997 . . . . . . . . . . . . . . 15 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ( I ↾ dom 𝑟) = ( I ↾ ran 𝑓))
96 id 22 . . . . . . . . . . . . . . 15 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → 𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)))
9795, 96sseq12d 4017 . . . . . . . . . . . . . 14 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓))))
9893sqxpeqd 5717 . . . . . . . . . . . . . . 15 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (dom 𝑟 × dom 𝑟) = (ran 𝑓 × ran 𝑓))
9996, 98sseq12d 4017 . . . . . . . . . . . . . 14 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ⊆ (dom 𝑟 × dom 𝑟) ↔ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)))
10094, 97, 993anbi123d 1438 . . . . . . . . . . . . 13 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ↔ (ran 𝑓𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓))))
101 difeq1 4119 . . . . . . . . . . . . . . 15 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ∖ I ) = (((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∖ I ))
102 difun2 4481 . . . . . . . . . . . . . . . . 17 ((𝑅 ∪ I ) ∖ I ) = (𝑅 ∖ I )
103102ineq1i 4216 . . . . . . . . . . . . . . . 16 (((𝑅 ∪ I ) ∖ I ) ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∖ I ) ∩ (ran 𝑓 × ran 𝑓))
104 indif1 4282 . . . . . . . . . . . . . . . 16 (((𝑅 ∪ I ) ∖ I ) ∩ (ran 𝑓 × ran 𝑓)) = (((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∖ I )
105 indif1 4282 . . . . . . . . . . . . . . . 16 ((𝑅 ∖ I ) ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )
106103, 104, 1053eqtr3i 2773 . . . . . . . . . . . . . . 15 (((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )
107101, 106eqtrdi 2793 . . . . . . . . . . . . . 14 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ))
108107, 93weeq12d 5674 . . . . . . . . . . . . 13 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((𝑟 ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓))
109100, 108anbi12d 632 . . . . . . . . . . . 12 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ↔ ((ran 𝑓𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)))
110 oieq1 9552 . . . . . . . . . . . . . . . 16 ((𝑟 ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟))
111107, 110syl 17 . . . . . . . . . . . . . . 15 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟))
112 oieq2 9553 . . . . . . . . . . . . . . . 16 (dom 𝑟 = ran 𝑓 → OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))
11393, 112syl 17 . . . . . . . . . . . . . . 15 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))
114111, 113eqtrd 2777 . . . . . . . . . . . . . 14 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))
115114dmeqd 5916 . . . . . . . . . . . . 13 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom OrdIso((𝑟 ∖ I ), dom 𝑟) = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))
116115eqeq2d 2748 . . . . . . . . . . . 12 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟) ↔ 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)))
117109, 116anbi12d 632 . . . . . . . . . . 11 (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) ↔ (((ran 𝑓𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓) ∧ 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))))
11880, 117spcev 3606 . . . . . . . . . 10 ((((ran 𝑓𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓) ∧ 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) → ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))
11935, 65, 78, 118syl21anc 838 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑓:𝑦1-1𝐴) → ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))
120119ex 412 . . . . . . . 8 (𝑦 ∈ On → (𝑓:𝑦1-1𝐴 → ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))))
121120exlimdv 1933 . . . . . . 7 (𝑦 ∈ On → (∃𝑓 𝑓:𝑦1-1𝐴 → ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))))
122 brdomi 8999 . . . . . . 7 (𝑦𝐴 → ∃𝑓 𝑓:𝑦1-1𝐴)
123121, 122impel 505 . . . . . 6 ((𝑦 ∈ On ∧ 𝑦𝐴) → ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))
124 simpr 484 . . . . . . . . . . 11 ((((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))
125 vex 3484 . . . . . . . . . . . . 13 𝑟 ∈ V
126125dmex 7931 . . . . . . . . . . . 12 dom 𝑟 ∈ V
127 eqid 2737 . . . . . . . . . . . . 13 OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso((𝑟 ∖ I ), dom 𝑟)
128127oion 9576 . . . . . . . . . . . 12 (dom 𝑟 ∈ V → dom OrdIso((𝑟 ∖ I ), dom 𝑟) ∈ On)
129126, 128ax-mp 5 . . . . . . . . . . 11 dom OrdIso((𝑟 ∖ I ), dom 𝑟) ∈ On
130124, 129eqeltrdi 2849 . . . . . . . . . 10 ((((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑦 ∈ On)
131130adantl 481 . . . . . . . . 9 ((𝐴𝑉 ∧ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → 𝑦 ∈ On)
132 simplr 769 . . . . . . . . . . . 12 ((((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → (𝑟 ∖ I ) We dom 𝑟)
133127oien 9578 . . . . . . . . . . . 12 ((dom 𝑟 ∈ V ∧ (𝑟 ∖ I ) We dom 𝑟) → dom OrdIso((𝑟 ∖ I ), dom 𝑟) ≈ dom 𝑟)
134126, 132, 133sylancr 587 . . . . . . . . . . 11 ((((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → dom OrdIso((𝑟 ∖ I ), dom 𝑟) ≈ dom 𝑟)
135124, 134eqbrtrd 5165 . . . . . . . . . 10 ((((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑦 ≈ dom 𝑟)
136 ssdomg 9040 . . . . . . . . . . 11 (𝐴𝑉 → (dom 𝑟𝐴 → dom 𝑟𝐴))
137 simpll1 1213 . . . . . . . . . . 11 ((((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → dom 𝑟𝐴)
138136, 137impel 505 . . . . . . . . . 10 ((𝐴𝑉 ∧ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → dom 𝑟𝐴)
139 endomtr 9052 . . . . . . . . . 10 ((𝑦 ≈ dom 𝑟 ∧ dom 𝑟𝐴) → 𝑦𝐴)
140135, 138, 139syl2an2 686 . . . . . . . . 9 ((𝐴𝑉 ∧ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → 𝑦𝐴)
141131, 140jca 511 . . . . . . . 8 ((𝐴𝑉 ∧ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → (𝑦 ∈ On ∧ 𝑦𝐴))
142141ex 412 . . . . . . 7 (𝐴𝑉 → ((((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → (𝑦 ∈ On ∧ 𝑦𝐴)))
143142exlimdv 1933 . . . . . 6 (𝐴𝑉 → (∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → (𝑦 ∈ On ∧ 𝑦𝐴)))
144123, 143impbid2 226 . . . . 5 (𝐴𝑉 → ((𝑦 ∈ On ∧ 𝑦𝐴) ↔ ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))))
14523, 144bitrid 283 . . . 4 (𝐴𝑉 → (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))))
146145eqabdv 2875 . . 3 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} = {𝑦 ∣ ∃𝑟(((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
14721, 146eqtr4id 2796 . 2 (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴})
14815, 18, 1473pm3.2i 1340 1 (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wex 1779  wcel 2108  {cab 2714  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600   class class class wbr 5143  {copab 5205   I cid 5577   E cep 5583   Or wor 5591   Se wse 5635   We wwe 5636   × cxp 5683  dom cdm 5685  ran crn 5686  cres 5687  Ord word 6383  Oncon0 6384  Fun wfun 6555  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561   Isom wiso 6562  cen 8982  cdom 8983  OrdIsocoi 9549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-en 8986  df-dom 8987  df-oi 9550
This theorem is referenced by:  hartogslem2  9583  harwdom  9631
  Copyright terms: Public domain W3C validator