Proof of Theorem hartogslem1
Step | Hyp | Ref
| Expression |
1 | | hartogslem.2 |
. . . . 5
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
2 | 1 | dmeqi 5557 |
. . . 4
⊢ dom 𝐹 = dom {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
3 | | dmopab 5567 |
. . . 4
⊢ dom
{〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑟 ∣ ∃𝑦(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
4 | 2, 3 | eqtri 2849 |
. . 3
⊢ dom 𝐹 = {𝑟 ∣ ∃𝑦(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
5 | | simp3 1172 |
. . . . . . . 8
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) |
6 | | simp1 1170 |
. . . . . . . . 9
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → dom 𝑟 ⊆ 𝐴) |
7 | | xpss12 5357 |
. . . . . . . . 9
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ dom 𝑟 ⊆ 𝐴) → (dom 𝑟 × dom 𝑟) ⊆ (𝐴 × 𝐴)) |
8 | 6, 6, 7 | syl2anc 579 |
. . . . . . . 8
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → (dom 𝑟 × dom 𝑟) ⊆ (𝐴 × 𝐴)) |
9 | 5, 8 | sstrd 3837 |
. . . . . . 7
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → 𝑟 ⊆ (𝐴 × 𝐴)) |
10 | | selpw 4385 |
. . . . . . 7
⊢ (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴)) |
11 | 9, 10 | sylibr 226 |
. . . . . 6
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴)) |
12 | 11 | ad2antrr 717 |
. . . . 5
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴)) |
13 | 12 | exlimiv 2029 |
. . . 4
⊢
(∃𝑦(((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴)) |
14 | 13 | abssi 3902 |
. . 3
⊢ {𝑟 ∣ ∃𝑦(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝐴 × 𝐴) |
15 | 4, 14 | eqsstri 3860 |
. 2
⊢ dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) |
16 | | funopab4 6160 |
. . 3
⊢ Fun
{〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
17 | 1 | funeqi 6144 |
. . 3
⊢ (Fun
𝐹 ↔ Fun {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}) |
18 | 16, 17 | mpbir 223 |
. 2
⊢ Fun 𝐹 |
19 | | breq1 4876 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≼ 𝐴 ↔ 𝑦 ≼ 𝐴)) |
20 | 19 | elrab 3585 |
. . . . 5
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
21 | | brdomi 8233 |
. . . . . . 7
⊢ (𝑦 ≼ 𝐴 → ∃𝑓 𝑓:𝑦–1-1→𝐴) |
22 | | f1f 6338 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝑦–1-1→𝐴 → 𝑓:𝑦⟶𝐴) |
23 | 22 | adantl 475 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓:𝑦⟶𝐴) |
24 | 23 | frnd 6285 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ran 𝑓 ⊆ 𝐴) |
25 | | resss 5658 |
. . . . . . . . . . . . . . 15
⊢ ( I
↾ ran 𝑓) ⊆
I |
26 | | ssun2 4004 |
. . . . . . . . . . . . . . 15
⊢ I
⊆ (𝑅 ∪ I
) |
27 | 25, 26 | sstri 3836 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ ran 𝑓) ⊆
(𝑅 ∪ I
) |
28 | | f1oi 6415 |
. . . . . . . . . . . . . . 15
⊢ ( I
↾ ran 𝑓):ran 𝑓–1-1-onto→ran
𝑓 |
29 | | f1of 6378 |
. . . . . . . . . . . . . . 15
⊢ (( I
↾ ran 𝑓):ran 𝑓–1-1-onto→ran
𝑓 → ( I ↾ ran
𝑓):ran 𝑓⟶ran 𝑓) |
30 | | fssxp 6297 |
. . . . . . . . . . . . . . 15
⊢ (( I
↾ ran 𝑓):ran 𝑓⟶ran 𝑓 → ( I ↾ ran 𝑓) ⊆ (ran 𝑓 × ran 𝑓)) |
31 | 28, 29, 30 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ ran 𝑓) ⊆ (ran
𝑓 × ran 𝑓) |
32 | 27, 31 | ssini 4060 |
. . . . . . . . . . . . 13
⊢ ( I
↾ ran 𝑓) ⊆
((𝑅 ∪ I ) ∩ (ran
𝑓 × ran 𝑓)) |
33 | 32 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓))) |
34 | | inss2 4058 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓) |
35 | 34 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) |
36 | 24, 33, 35 | 3jca 1162 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓))) |
37 | | eloni 5973 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ On → Ord 𝑦) |
38 | | ordwe 5976 |
. . . . . . . . . . . . . . 15
⊢ (Ord
𝑦 → E We 𝑦) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ On → E We 𝑦) |
40 | 39 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → E We 𝑦) |
41 | | f1f1orn 6389 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝑦–1-1→𝐴 → 𝑓:𝑦–1-1-onto→ran
𝑓) |
42 | 41 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓:𝑦–1-1-onto→ran
𝑓) |
43 | | hartogslem.3 |
. . . . . . . . . . . . . . . 16
⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} |
44 | | f1oiso 6856 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝑦–1-1-onto→ran
𝑓 ∧ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)}) → 𝑓 Isom E , 𝑅 (𝑦, ran 𝑓)) |
45 | 42, 43, 44 | sylancl 580 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓 Isom E , 𝑅 (𝑦, ran 𝑓)) |
46 | | isores2 6838 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Isom E , 𝑅 (𝑦, ran 𝑓) ↔ 𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓)) |
47 | 45, 46 | sylib 210 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓)) |
48 | | isowe 6854 |
. . . . . . . . . . . . . 14
⊢ (𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓) → ( E We 𝑦 ↔ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓)) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ( E We 𝑦 ↔ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓)) |
50 | 40, 49 | mpbid 224 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓) |
51 | | weso 5333 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓 → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) Or ran 𝑓) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) Or ran 𝑓) |
53 | | inss2 4058 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓) |
54 | 53 | brel 5401 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥 → (𝑥 ∈ ran 𝑓 ∧ 𝑥 ∈ ran 𝑓)) |
55 | 54 | simpld 490 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥 → 𝑥 ∈ ran 𝑓) |
56 | | sonr 5284 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) Or ran 𝑓 ∧ 𝑥 ∈ ran 𝑓) → ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
57 | 52, 55, 56 | syl2an 589 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) ∧ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) → ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
58 | 57 | pm2.01da 833 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
59 | 58 | alrimiv 2026 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ∀𝑥 ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
60 | | intirr 5756 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
61 | 59, 60 | sylibr 226 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∩ I ) = ∅) |
62 | | disj3 4245 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∩ I ) = ∅ ↔ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )) |
63 | 61, 62 | sylib 210 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )) |
64 | | weeq1 5330 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
66 | 50, 65 | mpbid 224 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓) |
67 | 37 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → Ord 𝑦) |
68 | | isoeq3 6824 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → (𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓) ↔ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓))) |
69 | 63, 68 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓) ↔ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓))) |
70 | 47, 69 | mpbid 224 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)) |
71 | | vex 3417 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
72 | 71 | rnex 7362 |
. . . . . . . . . . . . . . 15
⊢ ran 𝑓 ∈ V |
73 | | exse 5306 |
. . . . . . . . . . . . . . 15
⊢ (ran
𝑓 ∈ V → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) Se ran 𝑓) |
74 | 72, 73 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) Se ran 𝑓 |
75 | | eqid 2825 |
. . . . . . . . . . . . . . 15
⊢
OrdIso(((𝑅 ∩
(ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) |
76 | 75 | oieu 8713 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓 ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) Se ran 𝑓) → ((Ord 𝑦 ∧ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)) ↔ (𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) ∧ 𝑓 = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)))) |
77 | 66, 74, 76 | sylancl 580 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((Ord 𝑦 ∧ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)) ↔ (𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) ∧ 𝑓 = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)))) |
78 | 67, 70, 77 | mpbi2and 703 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) ∧ 𝑓 = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))) |
79 | 78 | simpld 490 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
80 | 72, 72 | xpex 7223 |
. . . . . . . . . . . . 13
⊢ (ran
𝑓 × ran 𝑓) ∈ V |
81 | 80 | inex2 5025 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∈ V |
82 | | sseq1 3851 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ⊆ (ran 𝑓 × ran 𝑓) ↔ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓))) |
83 | 34, 82 | mpbiri 250 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → 𝑟 ⊆ (ran 𝑓 × ran 𝑓)) |
84 | | dmss 5555 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ⊆ (ran 𝑓 × ran 𝑓) → dom 𝑟 ⊆ dom (ran 𝑓 × ran 𝑓)) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom 𝑟 ⊆ dom (ran 𝑓 × ran 𝑓)) |
86 | | dmxpid 5577 |
. . . . . . . . . . . . . . . . . 18
⊢ dom (ran
𝑓 × ran 𝑓) = ran 𝑓 |
87 | 85, 86 | syl6sseq 3876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom 𝑟 ⊆ ran 𝑓) |
88 | | dmresi 5700 |
. . . . . . . . . . . . . . . . . 18
⊢ dom ( I
↾ ran 𝑓) = ran 𝑓 |
89 | | sseq2 3852 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (( I ↾ ran 𝑓) ⊆ 𝑟 ↔ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)))) |
90 | 32, 89 | mpbiri 250 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ( I ↾ ran 𝑓) ⊆ 𝑟) |
91 | | dmss 5555 |
. . . . . . . . . . . . . . . . . . 19
⊢ (( I
↾ ran 𝑓) ⊆
𝑟 → dom ( I ↾
ran 𝑓) ⊆ dom 𝑟) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom ( I ↾ ran 𝑓) ⊆ dom 𝑟) |
93 | 88, 92 | syl5eqssr 3875 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ran 𝑓 ⊆ dom 𝑟) |
94 | 87, 93 | eqssd 3844 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom 𝑟 = ran 𝑓) |
95 | 94 | sseq1d 3857 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (dom 𝑟 ⊆ 𝐴 ↔ ran 𝑓 ⊆ 𝐴)) |
96 | 94 | reseq2d 5629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ( I ↾ dom 𝑟) = ( I ↾ ran 𝑓)) |
97 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → 𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓))) |
98 | 96, 97 | sseq12d 3859 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)))) |
99 | 94 | sqxpeqd 5374 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (dom 𝑟 × dom 𝑟) = (ran 𝑓 × ran 𝑓)) |
100 | 97, 99 | sseq12d 3859 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ⊆ (dom 𝑟 × dom 𝑟) ↔ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓))) |
101 | 95, 98, 100 | 3anbi123d 1564 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ↔ (ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)))) |
102 | | difeq1 3948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ∖ I ) = (((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∖ I )) |
103 | | difun2 4271 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∪ I ) ∖ I ) = (𝑅 ∖ I ) |
104 | 103 | ineq1i 4037 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∪ I ) ∖ I ) ∩
(ran 𝑓 × ran 𝑓)) = ((𝑅 ∖ I ) ∩ (ran 𝑓 × ran 𝑓)) |
105 | | indif1 4101 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∪ I ) ∖ I ) ∩
(ran 𝑓 × ran 𝑓)) = (((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) |
106 | | indif1 4101 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∖ I ) ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) |
107 | 104, 105,
106 | 3eqtr3i 2857 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) |
108 | 102, 107 | syl6eq 2877 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )) |
109 | | weeq1 5330 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → ((𝑟 ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We dom 𝑟)) |
110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((𝑟 ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We dom 𝑟)) |
111 | | weeq2 5331 |
. . . . . . . . . . . . . . . 16
⊢ (dom
𝑟 = ran 𝑓 → (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
112 | 94, 111 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
113 | 110, 112 | bitrd 271 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((𝑟 ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
114 | 101, 113 | anbi12d 624 |
. . . . . . . . . . . . 13
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ↔ ((ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓))) |
115 | | oieq1 8686 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑟 ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟)) |
116 | 108, 115 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟)) |
117 | | oieq2 8687 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
𝑟 = ran 𝑓 → OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
118 | 94, 117 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
119 | 116, 118 | eqtrd 2861 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
120 | 119 | dmeqd 5558 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom OrdIso((𝑟 ∖ I ), dom 𝑟) = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
121 | 120 | eqeq2d 2835 |
. . . . . . . . . . . . 13
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟) ↔ 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))) |
122 | 114, 121 | anbi12d 624 |
. . . . . . . . . . . 12
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) ↔ (((ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓) ∧ 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)))) |
123 | 81, 122 | spcev 3517 |
. . . . . . . . . . 11
⊢ ((((ran
𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓) ∧ 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) |
124 | 36, 66, 79, 123 | syl21anc 871 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) |
125 | 124 | ex 403 |
. . . . . . . . 9
⊢ (𝑦 ∈ On → (𝑓:𝑦–1-1→𝐴 → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))) |
126 | 125 | exlimdv 2032 |
. . . . . . . 8
⊢ (𝑦 ∈ On → (∃𝑓 𝑓:𝑦–1-1→𝐴 → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))) |
127 | 126 | imp 397 |
. . . . . . 7
⊢ ((𝑦 ∈ On ∧ ∃𝑓 𝑓:𝑦–1-1→𝐴) → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) |
128 | 21, 127 | sylan2 586 |
. . . . . 6
⊢ ((𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) |
129 | | simpr 479 |
. . . . . . . . . . 11
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) |
130 | | vex 3417 |
. . . . . . . . . . . . 13
⊢ 𝑟 ∈ V |
131 | 130 | dmex 7361 |
. . . . . . . . . . . 12
⊢ dom 𝑟 ∈ V |
132 | | eqid 2825 |
. . . . . . . . . . . . 13
⊢
OrdIso((𝑟 ∖ I
), dom 𝑟) = OrdIso((𝑟 ∖ I ), dom 𝑟) |
133 | 132 | oion 8710 |
. . . . . . . . . . . 12
⊢ (dom
𝑟 ∈ V → dom
OrdIso((𝑟 ∖ I ), dom
𝑟) ∈
On) |
134 | 131, 133 | ax-mp 5 |
. . . . . . . . . . 11
⊢ dom
OrdIso((𝑟 ∖ I ), dom
𝑟) ∈
On |
135 | 129, 134 | syl6eqel 2914 |
. . . . . . . . . 10
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑦 ∈ On) |
136 | 135 | adantl 475 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → 𝑦 ∈ On) |
137 | | simplr 785 |
. . . . . . . . . . . . 13
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → (𝑟 ∖ I ) We dom 𝑟) |
138 | 132 | oien 8712 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑟 ∈ V ∧ (𝑟 ∖ I ) We dom 𝑟) → dom OrdIso((𝑟 ∖ I ), dom 𝑟) ≈ dom 𝑟) |
139 | 131, 137,
138 | sylancr 581 |
. . . . . . . . . . . 12
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → dom OrdIso((𝑟 ∖ I ), dom 𝑟) ≈ dom 𝑟) |
140 | 129, 139 | eqbrtrd 4895 |
. . . . . . . . . . 11
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑦 ≈ dom 𝑟) |
141 | 140 | adantl 475 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → 𝑦 ≈ dom 𝑟) |
142 | | simpll1 1273 |
. . . . . . . . . . 11
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → dom 𝑟 ⊆ 𝐴) |
143 | | ssdomg 8268 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → (dom 𝑟 ⊆ 𝐴 → dom 𝑟 ≼ 𝐴)) |
144 | 143 | imp 397 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ dom 𝑟 ⊆ 𝐴) → dom 𝑟 ≼ 𝐴) |
145 | 142, 144 | sylan2 586 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → dom 𝑟 ≼ 𝐴) |
146 | | endomtr 8280 |
. . . . . . . . . 10
⊢ ((𝑦 ≈ dom 𝑟 ∧ dom 𝑟 ≼ 𝐴) → 𝑦 ≼ 𝐴) |
147 | 141, 145,
146 | syl2anc 579 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → 𝑦 ≼ 𝐴) |
148 | 136, 147 | jca 507 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
149 | 148 | ex 403 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴))) |
150 | 149 | exlimdv 2032 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴))) |
151 | 128, 150 | impbid2 218 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) ↔ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))) |
152 | 20, 151 | syl5bb 275 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))) |
153 | 152 | abbi2dv 2947 |
. . 3
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} = {𝑦 ∣ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}) |
154 | 1 | rneqi 5584 |
. . . 4
⊢ ran 𝐹 = ran {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
155 | | rnopab 5603 |
. . . 4
⊢ ran
{〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑦 ∣ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
156 | 154, 155 | eqtri 2849 |
. . 3
⊢ ran 𝐹 = {𝑦 ∣ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
157 | 153, 156 | syl6reqr 2880 |
. 2
⊢ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
158 | 15, 18, 157 | 3pm3.2i 1442 |
1
⊢ (dom
𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |