![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isoeq4 | Structured version Visualization version GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq4 | ⊢ (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 6851 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻:𝐶–1-1-onto→𝐵)) | |
2 | raleq 3331 | . . . 4 ⊢ (𝐴 = 𝐶 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
3 | 2 | raleqbi1dv 3346 | . . 3 ⊢ (𝐴 = 𝐶 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
4 | 1, 3 | anbi12d 631 | . 2 ⊢ (𝐴 = 𝐶 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐶–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
5 | df-isom 6582 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
6 | df-isom 6582 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ (𝐻:𝐶–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3067 class class class wbr 5166 –1-1-onto→wf1o 6572 ‘cfv 6573 Isom wiso 6574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ral 3068 df-rex 3077 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-isom 6582 |
This theorem is referenced by: oieu 9608 oiid 9610 finnisoeu 10182 iunfictbso 10183 fz1isolem 14510 isercolllem3 15715 summolem2a 15763 prodmolem2a 15982 erdszelem1 35159 erdsze 35170 erdsze2lem1 35171 erdsze2lem2 35172 isoeq145d 43381 fzisoeu 45215 fourierdlem36 46064 fourierdlem112 46139 fourierdlem113 46140 |
Copyright terms: Public domain | W3C validator |