| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoeq4 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| Ref | Expression |
|---|---|
| isoeq4 | ⊢ (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2 6792 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻:𝐶–1-1-onto→𝐵)) | |
| 2 | raleq 3298 | . . . 4 ⊢ (𝐴 = 𝐶 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 3 | 2 | raleqbi1dv 3313 | . . 3 ⊢ (𝐴 = 𝐶 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐶 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐶–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
| 5 | df-isom 6523 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 6 | df-isom 6523 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ (𝐻:𝐶–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3045 class class class wbr 5110 –1-1-onto→wf1o 6513 ‘cfv 6514 Isom wiso 6515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ral 3046 df-rex 3055 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-isom 6523 |
| This theorem is referenced by: oieu 9499 oiid 9501 finnisoeu 10073 iunfictbso 10074 fz1isolem 14433 isercolllem3 15640 summolem2a 15688 prodmolem2a 15907 erdszelem1 35185 erdsze 35196 erdsze2lem1 35197 erdsze2lem2 35198 isoeq145d 43415 fzisoeu 45305 fourierdlem36 46148 fourierdlem112 46223 fourierdlem113 46224 |
| Copyright terms: Public domain | W3C validator |