Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isoeq4 | Structured version Visualization version GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq4 | ⊢ (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 6705 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻:𝐶–1-1-onto→𝐵)) | |
2 | raleq 3342 | . . . 4 ⊢ (𝐴 = 𝐶 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
3 | 2 | raleqbi1dv 3340 | . . 3 ⊢ (𝐴 = 𝐶 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
4 | 1, 3 | anbi12d 631 | . 2 ⊢ (𝐴 = 𝐶 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐶–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
5 | df-isom 6442 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
6 | df-isom 6442 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ (𝐻:𝐶–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∀wral 3064 class class class wbr 5074 –1-1-onto→wf1o 6432 ‘cfv 6433 Isom wiso 6434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ral 3069 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-isom 6442 |
This theorem is referenced by: oieu 9298 oiid 9300 finnisoeu 9869 iunfictbso 9870 fz1isolem 14175 isercolllem3 15378 summolem2a 15427 prodmolem2a 15644 erdszelem1 33153 erdsze 33164 erdsze2lem1 33165 erdsze2lem2 33166 fzisoeu 42839 fourierdlem36 43684 fourierdlem112 43759 fourierdlem113 43760 |
Copyright terms: Public domain | W3C validator |