MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq4 Structured version   Visualization version   GIF version

Theorem isoeq4 7328
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq4 (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵)))

Proof of Theorem isoeq4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 6828 . . 3 (𝐴 = 𝐶 → (𝐻:𝐴1-1-onto𝐵𝐻:𝐶1-1-onto𝐵))
2 raleq 3319 . . . 4 (𝐴 = 𝐶 → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
32raleqbi1dv 3330 . . 3 (𝐴 = 𝐶 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
41, 3anbi12d 631 . 2 (𝐴 = 𝐶 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐶1-1-onto𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
5 df-isom 6557 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
6 df-isom 6557 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ (𝐻:𝐶1-1-onto𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
74, 5, 63bitr4g 314 1 (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wral 3058   class class class wbr 5148  1-1-ontowf1o 6547  cfv 6548   Isom wiso 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-cleq 2720  df-ral 3059  df-rex 3068  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-isom 6557
This theorem is referenced by:  oieu  9563  oiid  9565  finnisoeu  10137  iunfictbso  10138  fz1isolem  14455  isercolllem3  15646  summolem2a  15694  prodmolem2a  15911  erdszelem1  34801  erdsze  34812  erdsze2lem1  34813  erdsze2lem2  34814  isoeq145d  42849  fzisoeu  44682  fourierdlem36  45531  fourierdlem112  45606  fourierdlem113  45607
  Copyright terms: Public domain W3C validator