MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq4 Structured version   Visualization version   GIF version

Theorem isoeq4 7295
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq4 (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵)))

Proof of Theorem isoeq4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 6789 . . 3 (𝐴 = 𝐶 → (𝐻:𝐴1-1-onto𝐵𝐻:𝐶1-1-onto𝐵))
2 raleq 3296 . . . 4 (𝐴 = 𝐶 → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
32raleqbi1dv 3311 . . 3 (𝐴 = 𝐶 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
41, 3anbi12d 632 . 2 (𝐴 = 𝐶 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐶1-1-onto𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
5 df-isom 6520 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
6 df-isom 6520 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ (𝐻:𝐶1-1-onto𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
74, 5, 63bitr4g 314 1 (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3044   class class class wbr 5107  1-1-ontowf1o 6510  cfv 6511   Isom wiso 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ral 3045  df-rex 3054  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-isom 6520
This theorem is referenced by:  oieu  9492  oiid  9494  finnisoeu  10066  iunfictbso  10067  fz1isolem  14426  isercolllem3  15633  summolem2a  15681  prodmolem2a  15900  erdszelem1  35178  erdsze  35189  erdsze2lem1  35190  erdsze2lem2  35191  isoeq145d  43408  fzisoeu  45298  fourierdlem36  46141  fourierdlem112  46216  fourierdlem113  46217
  Copyright terms: Public domain W3C validator