| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issetri | Structured version Visualization version GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| issetri.1 | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Ref | Expression |
|---|---|
| issetri | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issetri.1 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 | |
| 2 | isset 3493 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 |
| This theorem is referenced by: zfrep4 5292 0ex 5306 inex1 5316 vpwex 5376 zfpair2 5432 vuniex 7760 bj-snsetex 36965 |
| Copyright terms: Public domain | W3C validator |