MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetri Structured version   Visualization version   GIF version

Theorem issetri 3446
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
issetri.1 𝑥 𝑥 = 𝐴
Assertion
Ref Expression
issetri 𝐴 ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2 𝑥 𝑥 = 𝐴
2 isset 3443 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
31, 2mpbir 230 1 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1785  wcel 2109  Vcvv 3430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432
This theorem is referenced by:  zfrep4  5223  0ex  5234  inex1  5244  vpwex  5303  zfpair2  5356  vuniex  7583  bj-snsetex  35132
  Copyright terms: Public domain W3C validator