| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issetri | Structured version Visualization version GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| issetri.1 | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Ref | Expression |
|---|---|
| issetri | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issetri.1 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 | |
| 2 | isset 3450 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: zfrep4 5229 0ex 5243 inex1 5253 vpwex 5313 zfpair2 5369 vuniex 7672 bj-snsetex 37005 |
| Copyright terms: Public domain | W3C validator |