![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetri | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
issetri.1 | ⊢ ∃𝑥 𝑥 = 𝐴 |
Ref | Expression |
---|---|
issetri | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetri.1 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 | |
2 | isset 3492 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 |
This theorem is referenced by: zfrep4 5299 0ex 5313 inex1 5323 vpwex 5383 zfpair2 5439 vuniex 7758 bj-snsetex 36946 |
Copyright terms: Public domain | W3C validator |