![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetri | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
issetri.1 | ⊢ ∃𝑥 𝑥 = 𝐴 |
Ref | Expression |
---|---|
issetri | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetri.1 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 | |
2 | isset 3487 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 |
This theorem is referenced by: zfrep4 5296 0ex 5307 inex1 5317 vpwex 5375 zfpair2 5428 vuniex 7728 bj-snsetex 35839 |
Copyright terms: Public domain | W3C validator |