![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zfpair2 | Structured version Visualization version GIF version |
Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr 5420. See zfpair 5412 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.) |
Ref | Expression |
---|---|
zfpair2 | ⊢ {𝑥, 𝑦} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pr 5420 | . . . 4 ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | |
2 | 1 | bm1.3ii 5295 | . . 3 ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
3 | dfcleq 2719 | . . . . 5 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦})) | |
4 | vex 3472 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
5 | 4 | elpr 4646 | . . . . . . 7 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
6 | 5 | bibi2i 337 | . . . . . 6 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
7 | 6 | albii 1813 | . . . . 5 ⊢ (∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
8 | 3, 7 | bitri 275 | . . . 4 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
9 | 8 | exbii 1842 | . . 3 ⊢ (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
10 | 2, 9 | mpbir 230 | . 2 ⊢ ∃𝑧 𝑧 = {𝑥, 𝑦} |
11 | 10 | issetri 3485 | 1 ⊢ {𝑥, 𝑦} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 {cpr 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-un 3948 df-sn 4624 df-pr 4626 |
This theorem is referenced by: vsnex 5422 prex 5425 pwssun 5564 xpsspw 5802 funopg 6575 fiint 9323 brdom7disj 10525 brdom6disj 10526 2pthfrgrrn 30039 sprval 46701 prprval 46736 reupr 46744 |
Copyright terms: Public domain | W3C validator |