Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfpair2 | Structured version Visualization version GIF version |
Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr 5347. See zfpair 5339 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.) |
Ref | Expression |
---|---|
zfpair2 | ⊢ {𝑥, 𝑦} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pr 5347 | . . . 4 ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | |
2 | 1 | bm1.3ii 5221 | . . 3 ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
3 | dfcleq 2731 | . . . . 5 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦})) | |
4 | vex 3426 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
5 | 4 | elpr 4581 | . . . . . . 7 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
6 | 5 | bibi2i 337 | . . . . . 6 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
7 | 6 | albii 1823 | . . . . 5 ⊢ (∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
8 | 3, 7 | bitri 274 | . . . 4 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
9 | 8 | exbii 1851 | . . 3 ⊢ (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
10 | 2, 9 | mpbir 230 | . 2 ⊢ ∃𝑧 𝑧 = {𝑥, 𝑦} |
11 | 10 | issetri 3438 | 1 ⊢ {𝑥, 𝑦} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: snex 5349 prex 5350 pwssun 5476 xpsspw 5708 funopg 6452 fiint 9021 brdom7disj 10218 brdom6disj 10219 2pthfrgrrn 28547 sprval 44819 prprval 44854 reupr 44862 |
Copyright terms: Public domain | W3C validator |