| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfpair2 | Structured version Visualization version GIF version | ||
| Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr 5370. See zfpair 5359 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.) |
| Ref | Expression |
|---|---|
| zfpair2 | ⊢ {𝑥, 𝑦} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pr 5370 | . . . 4 ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | |
| 2 | 1 | sepexi 5239 | . . 3 ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
| 3 | dfcleq 2724 | . . . . 5 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦})) | |
| 4 | vex 3440 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
| 5 | 4 | elpr 4601 | . . . . . . 7 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
| 6 | 5 | bibi2i 337 | . . . . . 6 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
| 7 | 6 | albii 1820 | . . . . 5 ⊢ (∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
| 8 | 3, 7 | bitri 275 | . . . 4 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
| 9 | 8 | exbii 1849 | . . 3 ⊢ (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
| 10 | 2, 9 | mpbir 231 | . 2 ⊢ ∃𝑧 𝑧 = {𝑥, 𝑦} |
| 11 | 10 | issetri 3455 | 1 ⊢ {𝑥, 𝑦} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: vsnex 5372 prex 5375 pwssun 5508 xpsspw 5749 funopg 6515 fiint 9211 brdom7disj 10422 brdom6disj 10423 2pthfrgrrn 30260 sprval 47516 prprval 47551 reupr 47559 |
| Copyright terms: Public domain | W3C validator |