MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpair2 Structured version   Visualization version   GIF version

Theorem zfpair2 5388
Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr 5387. See zfpair 5376 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.)
Assertion
Ref Expression
zfpair2 {𝑥, 𝑦} ∈ V

Proof of Theorem zfpair2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-pr 5387 . . . 4 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
21sepexi 5256 . . 3 𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦))
3 dfcleq 2722 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}))
4 vex 3451 . . . . . . . 8 𝑤 ∈ V
54elpr 4614 . . . . . . 7 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
65bibi2i 337 . . . . . 6 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
76albii 1819 . . . . 5 (∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
83, 7bitri 275 . . . 4 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
98exbii 1848 . . 3 (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
102, 9mpbir 231 . 2 𝑧 𝑧 = {𝑥, 𝑦}
1110issetri 3466 1 {𝑥, 𝑦} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-sn 4590  df-pr 4592
This theorem is referenced by:  vsnex  5389  prex  5392  pwssun  5530  xpsspw  5772  funopg  6550  fiint  9277  fiintOLD  9278  brdom7disj  10484  brdom6disj  10485  2pthfrgrrn  30211  sprval  47480  prprval  47515  reupr  47523
  Copyright terms: Public domain W3C validator