MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpair2 Structured version   Visualization version   GIF version

Theorem zfpair2 5429
Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr 5428. See zfpair 5420 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.)
Assertion
Ref Expression
zfpair2 {𝑥, 𝑦} ∈ V

Proof of Theorem zfpair2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-pr 5428 . . . 4 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
21bm1.3ii 5303 . . 3 𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦))
3 dfcleq 2726 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}))
4 vex 3479 . . . . . . . 8 𝑤 ∈ V
54elpr 4652 . . . . . . 7 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
65bibi2i 338 . . . . . 6 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
76albii 1822 . . . . 5 (∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
83, 7bitri 275 . . . 4 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
98exbii 1851 . . 3 (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
102, 9mpbir 230 . 2 𝑧 𝑧 = {𝑥, 𝑦}
1110issetri 3491 1 {𝑥, 𝑦} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 846  wal 1540   = wceq 1542  wex 1782  wcel 2107  Vcvv 3475  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-sn 4630  df-pr 4632
This theorem is referenced by:  vsnex  5430  prex  5433  pwssun  5572  xpsspw  5810  funopg  6583  fiint  9324  brdom7disj  10526  brdom6disj  10527  2pthfrgrrn  29535  sprval  46147  prprval  46182  reupr  46190
  Copyright terms: Public domain W3C validator