![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version |
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
vuniex | ⊢ ∪ 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex2 7773 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
2 | 1 | issetri 3507 | 1 ⊢ ∪ 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-uni 4932 |
This theorem is referenced by: uniexg 7775 uniuni 7797 rankuni 9932 r0weon 10081 dfac3 10190 dfac5lem4 10195 dfac5lem4OLD 10197 dfac8 10205 dfacacn 10211 kmlem2 10221 cfslb2n 10337 ttukeylem5 10582 ttukeylem6 10583 brdom7disj 10600 brdom6disj 10601 intwun 10804 wunex2 10807 fnmrc 17665 mrcfval 17666 mrisval 17688 sylow2a 19661 toprntopon 22952 distop 23023 fctop 23032 cctop 23034 ppttop 23035 epttop 23037 fncld 23051 mretopd 23121 toponmre 23122 iscnp2 23268 2ndcsep 23488 kgenf 23570 alexsubALTlem2 24077 pwsiga 34094 sigainb 34100 dmsigagen 34108 pwldsys 34121 ldsysgenld 34124 ldgenpisyslem1 34127 ddemeas 34200 brapply 35902 dfrdg4 35915 fnessref 36323 neibastop1 36325 finxpreclem2 37356 mbfresfi 37626 pwinfi 43526 pwsal 46236 intsal 46251 salexct 46255 0ome 46450 |
Copyright terms: Public domain | W3C validator |