| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version | ||
| Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| vuniex | ⊢ ∪ 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex2 7694 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 2 | 1 | issetri 3463 | 1 ⊢ ∪ 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-uni 4868 |
| This theorem is referenced by: uniexg 7696 uniuni 7718 rankuni 9792 r0weon 9941 dfac3 10050 dfac5lem4 10055 dfac5lem4OLD 10057 dfac8 10065 dfacacn 10071 kmlem2 10081 cfslb2n 10197 ttukeylem5 10442 ttukeylem6 10443 brdom7disj 10460 brdom6disj 10461 intwun 10664 wunex2 10667 fnmrc 17544 mrcfval 17545 mrisval 17567 sylow2a 19525 toprntopon 22788 distop 22858 fctop 22867 cctop 22869 ppttop 22870 epttop 22872 fncld 22885 mretopd 22955 toponmre 22956 iscnp2 23102 2ndcsep 23322 kgenf 23404 alexsubALTlem2 23911 pwsiga 34093 sigainb 34099 dmsigagen 34107 pwldsys 34120 ldsysgenld 34123 ldgenpisyslem1 34126 ddemeas 34199 brapply 35899 dfrdg4 35912 fnessref 36318 neibastop1 36320 finxpreclem2 37351 mbfresfi 37633 pwinfi 43526 pwsal 46286 intsal 46301 salexct 46305 0ome 46500 |
| Copyright terms: Public domain | W3C validator |