| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version | ||
| Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| vuniex | ⊢ ∪ 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex2 7694 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 2 | 1 | issetri 3463 | 1 ⊢ ∪ 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-uni 4868 |
| This theorem is referenced by: uniexg 7696 uniuni 7718 rankuni 9792 r0weon 9941 dfac3 10050 dfac5lem4 10055 dfac5lem4OLD 10057 dfac8 10065 dfacacn 10071 kmlem2 10081 cfslb2n 10197 ttukeylem5 10442 ttukeylem6 10443 brdom7disj 10460 brdom6disj 10461 intwun 10664 wunex2 10667 fnmrc 17548 mrcfval 17549 mrisval 17571 sylow2a 19533 toprntopon 22845 distop 22915 fctop 22924 cctop 22926 ppttop 22927 epttop 22929 fncld 22942 mretopd 23012 toponmre 23013 iscnp2 23159 2ndcsep 23379 kgenf 23461 alexsubALTlem2 23968 pwsiga 34113 sigainb 34119 dmsigagen 34127 pwldsys 34140 ldsysgenld 34143 ldgenpisyslem1 34146 ddemeas 34219 brapply 35919 dfrdg4 35932 fnessref 36338 neibastop1 36340 finxpreclem2 37371 mbfresfi 37653 pwinfi 43546 pwsal 46306 intsal 46321 salexct 46325 0ome 46520 |
| Copyright terms: Public domain | W3C validator |