| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version | ||
| Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| vuniex | ⊢ ∪ 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex2 7732 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 2 | 1 | issetri 3478 | 1 ⊢ ∪ 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-uni 4884 |
| This theorem is referenced by: uniexg 7734 uniuni 7756 rankuni 9877 r0weon 10026 dfac3 10135 dfac5lem4 10140 dfac5lem4OLD 10142 dfac8 10150 dfacacn 10156 kmlem2 10166 cfslb2n 10282 ttukeylem5 10527 ttukeylem6 10528 brdom7disj 10545 brdom6disj 10546 intwun 10749 wunex2 10752 fnmrc 17619 mrcfval 17620 mrisval 17642 sylow2a 19600 toprntopon 22863 distop 22933 fctop 22942 cctop 22944 ppttop 22945 epttop 22947 fncld 22960 mretopd 23030 toponmre 23031 iscnp2 23177 2ndcsep 23397 kgenf 23479 alexsubALTlem2 23986 pwsiga 34161 sigainb 34167 dmsigagen 34175 pwldsys 34188 ldsysgenld 34191 ldgenpisyslem1 34194 ddemeas 34267 brapply 35956 dfrdg4 35969 fnessref 36375 neibastop1 36377 finxpreclem2 37408 mbfresfi 37690 pwinfi 43588 pwsal 46344 intsal 46359 salexct 46363 0ome 46558 |
| Copyright terms: Public domain | W3C validator |