| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version | ||
| Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| vuniex | ⊢ ∪ 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex2 7671 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 2 | 1 | issetri 3455 | 1 ⊢ ∪ 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-uni 4857 |
| This theorem is referenced by: uniexg 7673 uniuni 7695 rankuni 9756 r0weon 9903 dfac3 10012 dfac5lem4 10017 dfac5lem4OLD 10019 dfac8 10027 dfacacn 10033 kmlem2 10043 cfslb2n 10159 ttukeylem5 10404 ttukeylem6 10405 brdom7disj 10422 brdom6disj 10423 intwun 10626 wunex2 10629 fnmrc 17513 mrcfval 17514 mrisval 17536 sylow2a 19531 toprntopon 22840 distop 22910 fctop 22919 cctop 22921 ppttop 22922 epttop 22924 fncld 22937 mretopd 23007 toponmre 23008 iscnp2 23154 2ndcsep 23374 kgenf 23456 alexsubALTlem2 23963 pwsiga 34143 sigainb 34149 dmsigagen 34157 pwldsys 34170 ldsysgenld 34173 ldgenpisyslem1 34176 ddemeas 34249 brapply 35980 dfrdg4 35995 fnessref 36401 neibastop1 36403 finxpreclem2 37434 mbfresfi 37716 pwinfi 43667 pwsal 46423 intsal 46438 salexct 46442 0ome 46637 |
| Copyright terms: Public domain | W3C validator |