Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version |
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
vuniex | ⊢ ∪ 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex2 7569 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
2 | 1 | issetri 3438 | 1 ⊢ ∪ 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-uni 4837 |
This theorem is referenced by: uniexg 7571 uniuni 7590 rankuni 9552 r0weon 9699 dfac3 9808 dfac5lem4 9813 dfac8 9822 dfacacn 9828 kmlem2 9838 cfslb2n 9955 ttukeylem5 10200 ttukeylem6 10201 brdom7disj 10218 brdom6disj 10219 intwun 10422 wunex2 10425 fnmrc 17233 mrcfval 17234 mrisval 17256 sylow2a 19139 toprntopon 21982 distop 22053 fctop 22062 cctop 22064 ppttop 22065 epttop 22067 fncld 22081 mretopd 22151 toponmre 22152 iscnp2 22298 2ndcsep 22518 kgenf 22600 alexsubALTlem2 23107 pwsiga 31998 sigainb 32004 dmsigagen 32012 pwldsys 32025 ldsysgenld 32028 ldgenpisyslem1 32031 ddemeas 32104 brapply 34167 dfrdg4 34180 fnessref 34473 neibastop1 34475 finxpreclem2 35488 mbfresfi 35750 pwinfi 41060 pwsal 43746 intsal 43759 salexct 43763 0ome 43957 |
Copyright terms: Public domain | W3C validator |