| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version | ||
| Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| vuniex | ⊢ ∪ 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex2 7717 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 2 | 1 | issetri 3469 | 1 ⊢ ∪ 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-uni 4875 |
| This theorem is referenced by: uniexg 7719 uniuni 7741 rankuni 9823 r0weon 9972 dfac3 10081 dfac5lem4 10086 dfac5lem4OLD 10088 dfac8 10096 dfacacn 10102 kmlem2 10112 cfslb2n 10228 ttukeylem5 10473 ttukeylem6 10474 brdom7disj 10491 brdom6disj 10492 intwun 10695 wunex2 10698 fnmrc 17575 mrcfval 17576 mrisval 17598 sylow2a 19556 toprntopon 22819 distop 22889 fctop 22898 cctop 22900 ppttop 22901 epttop 22903 fncld 22916 mretopd 22986 toponmre 22987 iscnp2 23133 2ndcsep 23353 kgenf 23435 alexsubALTlem2 23942 pwsiga 34127 sigainb 34133 dmsigagen 34141 pwldsys 34154 ldsysgenld 34157 ldgenpisyslem1 34160 ddemeas 34233 brapply 35933 dfrdg4 35946 fnessref 36352 neibastop1 36354 finxpreclem2 37385 mbfresfi 37667 pwinfi 43560 pwsal 46320 intsal 46335 salexct 46339 0ome 46534 |
| Copyright terms: Public domain | W3C validator |