| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version | ||
| Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| vuniex | ⊢ ∪ 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex2 7714 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 2 | 1 | issetri 3466 | 1 ⊢ ∪ 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-uni 4872 |
| This theorem is referenced by: uniexg 7716 uniuni 7738 rankuni 9816 r0weon 9965 dfac3 10074 dfac5lem4 10079 dfac5lem4OLD 10081 dfac8 10089 dfacacn 10095 kmlem2 10105 cfslb2n 10221 ttukeylem5 10466 ttukeylem6 10467 brdom7disj 10484 brdom6disj 10485 intwun 10688 wunex2 10691 fnmrc 17568 mrcfval 17569 mrisval 17591 sylow2a 19549 toprntopon 22812 distop 22882 fctop 22891 cctop 22893 ppttop 22894 epttop 22896 fncld 22909 mretopd 22979 toponmre 22980 iscnp2 23126 2ndcsep 23346 kgenf 23428 alexsubALTlem2 23935 pwsiga 34120 sigainb 34126 dmsigagen 34134 pwldsys 34147 ldsysgenld 34150 ldgenpisyslem1 34153 ddemeas 34226 brapply 35926 dfrdg4 35939 fnessref 36345 neibastop1 36347 finxpreclem2 37378 mbfresfi 37660 pwinfi 43553 pwsal 46313 intsal 46328 salexct 46332 0ome 46527 |
| Copyright terms: Public domain | W3C validator |