Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version |
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
vuniex | ⊢ ∪ 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex2 7468 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
2 | 1 | issetri 3426 | 1 ⊢ ∪ 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 ∪ cuni 4801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5173 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-uni 4802 |
This theorem is referenced by: uniexg 7470 uniuni 7489 rankuni 9338 r0weon 9485 dfac3 9594 dfac5lem4 9599 dfac8 9608 dfacacn 9614 kmlem2 9624 cfslb2n 9741 ttukeylem5 9986 ttukeylem6 9987 brdom7disj 10004 brdom6disj 10005 intwun 10208 wunex2 10211 fnmrc 16949 mrcfval 16950 mrisval 16972 sylow2a 18824 toprntopon 21638 distop 21708 fctop 21717 cctop 21719 ppttop 21720 epttop 21722 fncld 21735 mretopd 21805 toponmre 21806 iscnp2 21952 2ndcsep 22172 kgenf 22254 alexsubALTlem2 22761 pwsiga 31629 sigainb 31635 dmsigagen 31643 pwldsys 31656 ldsysgenld 31659 ldgenpisyslem1 31662 ddemeas 31735 brapply 33823 dfrdg4 33836 fnessref 34129 neibastop1 34131 finxpreclem2 35121 mbfresfi 35417 pwinfi 40671 pwsal 43358 intsal 43371 salexct 43375 0ome 43569 |
Copyright terms: Public domain | W3C validator |