![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version |
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
vuniex | ⊢ ∪ 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex2 7757 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
2 | 1 | issetri 3497 | 1 ⊢ ∪ 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-uni 4913 |
This theorem is referenced by: uniexg 7759 uniuni 7781 rankuni 9901 r0weon 10050 dfac3 10159 dfac5lem4 10164 dfac5lem4OLD 10166 dfac8 10174 dfacacn 10180 kmlem2 10190 cfslb2n 10306 ttukeylem5 10551 ttukeylem6 10552 brdom7disj 10569 brdom6disj 10570 intwun 10773 wunex2 10776 fnmrc 17652 mrcfval 17653 mrisval 17675 sylow2a 19652 toprntopon 22947 distop 23018 fctop 23027 cctop 23029 ppttop 23030 epttop 23032 fncld 23046 mretopd 23116 toponmre 23117 iscnp2 23263 2ndcsep 23483 kgenf 23565 alexsubALTlem2 24072 pwsiga 34111 sigainb 34117 dmsigagen 34125 pwldsys 34138 ldsysgenld 34141 ldgenpisyslem1 34144 ddemeas 34217 brapply 35920 dfrdg4 35933 fnessref 36340 neibastop1 36342 finxpreclem2 37373 mbfresfi 37653 pwinfi 43554 pwsal 46271 intsal 46286 salexct 46290 0ome 46485 |
Copyright terms: Public domain | W3C validator |