![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version |
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
vuniex | ⊢ ∪ 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex2 7727 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
2 | 1 | issetri 3490 | 1 ⊢ ∪ 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-uni 4909 |
This theorem is referenced by: uniexg 7729 uniuni 7748 rankuni 9857 r0weon 10006 dfac3 10115 dfac5lem4 10120 dfac8 10129 dfacacn 10135 kmlem2 10145 cfslb2n 10262 ttukeylem5 10507 ttukeylem6 10508 brdom7disj 10525 brdom6disj 10526 intwun 10729 wunex2 10732 fnmrc 17550 mrcfval 17551 mrisval 17573 sylow2a 19486 toprntopon 22426 distop 22497 fctop 22506 cctop 22508 ppttop 22509 epttop 22511 fncld 22525 mretopd 22595 toponmre 22596 iscnp2 22742 2ndcsep 22962 kgenf 23044 alexsubALTlem2 23551 pwsiga 33123 sigainb 33129 dmsigagen 33137 pwldsys 33150 ldsysgenld 33153 ldgenpisyslem1 33156 ddemeas 33229 brapply 34905 dfrdg4 34918 fnessref 35237 neibastop1 35239 finxpreclem2 36266 mbfresfi 36529 pwinfi 42305 pwsal 45021 intsal 45036 salexct 45040 0ome 45235 |
Copyright terms: Public domain | W3C validator |