| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version | ||
| Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| vuniex | ⊢ ∪ 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex2 7674 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 2 | 1 | issetri 3455 | 1 ⊢ ∪ 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-uni 4859 |
| This theorem is referenced by: uniexg 7676 uniuni 7698 rankuni 9759 r0weon 9906 dfac3 10015 dfac5lem4 10020 dfac5lem4OLD 10022 dfac8 10030 dfacacn 10036 kmlem2 10046 cfslb2n 10162 ttukeylem5 10407 ttukeylem6 10408 brdom7disj 10425 brdom6disj 10426 intwun 10629 wunex2 10632 fnmrc 17513 mrcfval 17514 mrisval 17536 sylow2a 19498 toprntopon 22810 distop 22880 fctop 22889 cctop 22891 ppttop 22892 epttop 22894 fncld 22907 mretopd 22977 toponmre 22978 iscnp2 23124 2ndcsep 23344 kgenf 23426 alexsubALTlem2 23933 pwsiga 34097 sigainb 34103 dmsigagen 34111 pwldsys 34124 ldsysgenld 34127 ldgenpisyslem1 34130 ddemeas 34203 brapply 35916 dfrdg4 35929 fnessref 36335 neibastop1 36337 finxpreclem2 37368 mbfresfi 37650 pwinfi 43541 pwsal 46300 intsal 46315 salexct 46319 0ome 46514 |
| Copyright terms: Public domain | W3C validator |