Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuncom | Structured version Visualization version GIF version |
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
iuncom | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 3281 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
2 | eliun 4925 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) | |
3 | 2 | rexbii 3177 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
4 | eliun 4925 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
5 | 4 | rexbii 3177 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) |
6 | 1, 3, 5 | 3bitr4i 302 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
7 | eliun 4925 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶) | |
8 | eliun 4925 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) | |
9 | 6, 7, 8 | 3bitr4i 302 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶) |
10 | 9 | eqriv 2735 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-iun 4923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |