MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncom Structured version   Visualization version   GIF version

Theorem iuncom 4999
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
iuncom 𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem iuncom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rexcom 3290 . . . 4 (∃𝑥𝐴𝑦𝐵 𝑧𝐶 ↔ ∃𝑦𝐵𝑥𝐴 𝑧𝐶)
2 eliun 4995 . . . . 5 (𝑧 𝑦𝐵 𝐶 ↔ ∃𝑦𝐵 𝑧𝐶)
32rexbii 3094 . . . 4 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝑧𝐶)
4 eliun 4995 . . . . 5 (𝑧 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑧𝐶)
54rexbii 3094 . . . 4 (∃𝑦𝐵 𝑧 𝑥𝐴 𝐶 ↔ ∃𝑦𝐵𝑥𝐴 𝑧𝐶)
61, 3, 53bitr4i 303 . . 3 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃𝑦𝐵 𝑧 𝑥𝐴 𝐶)
7 eliun 4995 . . 3 (𝑧 𝑥𝐴 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴 𝑧 𝑦𝐵 𝐶)
8 eliun 4995 . . 3 (𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∃𝑦𝐵 𝑧 𝑥𝐴 𝐶)
96, 7, 83bitr4i 303 . 2 (𝑧 𝑥𝐴 𝑦𝐵 𝐶𝑧 𝑦𝐵 𝑥𝐴 𝐶)
109eqriv 2734 1 𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wrex 3070   ciun 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-v 3482  df-iun 4993
This theorem is referenced by:  pzriprnglem11  21502
  Copyright terms: Public domain W3C validator