| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuncom | Structured version Visualization version GIF version | ||
| Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.) |
| Ref | Expression |
|---|---|
| iuncom | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom 3261 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 2 | eliun 4943 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) | |
| 3 | 2 | rexbii 3079 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
| 4 | eliun 4943 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 5 | 4 | rexbii 3079 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 6 | 1, 3, 5 | 3bitr4i 303 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
| 7 | eliun 4943 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶) | |
| 8 | eliun 4943 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶) |
| 10 | 9 | eqriv 2728 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-iun 4941 |
| This theorem is referenced by: pzriprnglem11 21428 |
| Copyright terms: Public domain | W3C validator |