![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuncom | Structured version Visualization version GIF version |
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
iuncom | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 3286 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
2 | eliun 5001 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) | |
3 | 2 | rexbii 3093 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
4 | eliun 5001 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
5 | 4 | rexbii 3093 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) |
6 | 1, 3, 5 | 3bitr4i 303 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
7 | eliun 5001 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶) | |
8 | eliun 5001 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) | |
9 | 6, 7, 8 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶) |
10 | 9 | eqriv 2728 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-v 3475 df-iun 4999 |
This theorem is referenced by: pzriprnglem11 21351 |
Copyright terms: Public domain | W3C validator |