MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem11 Structured version   Visualization version   GIF version

Theorem pzriprnglem11 21450
Description: Lemma 11 for pzriprng 21456: The base set of the quotient of 𝑅 and 𝐽. (Contributed by AV, 22-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem11 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Distinct variable group:   ,𝑟
Allowed substitution hints:   𝑄(𝑟)   𝑅(𝑟)   1 (𝑟)   𝐼(𝑟)   𝐽(𝑟)

Proof of Theorem pzriprnglem11
Dummy variables 𝑒 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 8723 . 2 ((ℤ × ℤ) / ) = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
2 pzriprng.g . . 3 = (𝑅 ~QG 𝐼)
3 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
43a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑄 = (𝑅 /s ))
5 pzriprng.r . . . . . . 7 𝑅 = (ℤring ×sring)
65pzriprnglem2 21441 . . . . . 6 (Base‘𝑅) = (ℤ × ℤ)
76eqcomi 2744 . . . . 5 (ℤ × ℤ) = (Base‘𝑅)
87a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → (ℤ × ℤ) = (Base‘𝑅))
9 ovexd 7438 . . . . 5 ( = (𝑅 ~QG 𝐼) → (𝑅 ~QG 𝐼) ∈ V)
102, 9eqeltrid 2838 . . . 4 ( = (𝑅 ~QG 𝐼) → ∈ V)
115pzriprnglem1 21440 . . . . 5 𝑅 ∈ Rng
1211a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑅 ∈ Rng)
134, 8, 10, 12qusbas 17557 . . 3 ( = (𝑅 ~QG 𝐼) → ((ℤ × ℤ) / ) = (Base‘𝑄))
142, 13ax-mp 5 . 2 ((ℤ × ℤ) / ) = (Base‘𝑄)
15 nfcv 2898 . . . 4 𝑠{𝑒𝑒 = [𝑝] }
16 nfcv 2898 . . . 4 𝑟{𝑒𝑒 = [𝑝] }
17 nfcv 2898 . . . 4 𝑝{𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
18 eceq1 8756 . . . . . 6 (𝑝 = ⟨𝑠, 𝑟⟩ → [𝑝] = [⟨𝑠, 𝑟⟩] )
1918eqeq2d 2746 . . . . 5 (𝑝 = ⟨𝑠, 𝑟⟩ → (𝑒 = [𝑝] 𝑒 = [⟨𝑠, 𝑟⟩] ))
2019abbidv 2801 . . . 4 (𝑝 = ⟨𝑠, 𝑟⟩ → {𝑒𝑒 = [𝑝] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] })
2115, 16, 17, 20iunxpf 5828 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
22 iunab 5027 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
23 iuncom 4975 . . . 4 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
24 df-sn 4602 . . . . . . . . 9 {[⟨𝑠, 𝑟⟩] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
2524eqcomi 2744 . . . . . . . 8 {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] }
2625a1i 11 . . . . . . 7 (𝑠 ∈ ℤ → {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] })
2726iuneq2i 4989 . . . . . 6 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] }
28 simpr 484 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = [⟨𝑠, 𝑟⟩] )
29 pzriprng.i . . . . . . . . . . . . . . 15 𝐼 = (ℤ × {0})
30 pzriprng.j . . . . . . . . . . . . . . 15 𝐽 = (𝑅s 𝐼)
31 pzriprng.1 . . . . . . . . . . . . . . 15 1 = (1r𝐽)
325, 29, 30, 31, 2pzriprnglem10 21449 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3332ancoms 458 . . . . . . . . . . . . 13 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3433adantr 480 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3528, 34eqtrd 2770 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = (ℤ × {𝑟}))
3635ex 412 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
3736rexlimdva 3141 . . . . . . . . 9 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
38 0zd 12598 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 0 ∈ ℤ)
39 simpr 484 . . . . . . . . . . . 12 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 𝑝 = (ℤ × {𝑟}))
40 opeq1 4849 . . . . . . . . . . . . 13 (𝑠 = 0 → ⟨𝑠, 𝑟⟩ = ⟨0, 𝑟⟩)
4140eceq1d 8757 . . . . . . . . . . . 12 (𝑠 = 0 → [⟨𝑠, 𝑟⟩] = [⟨0, 𝑟⟩] )
4239, 41eqeqan12d 2749 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) ∧ 𝑠 = 0) → (𝑝 = [⟨𝑠, 𝑟⟩] ↔ (ℤ × {𝑟}) = [⟨0, 𝑟⟩] ))
43 0zd 12598 . . . . . . . . . . . . . 14 (𝑟 ∈ ℤ → 0 ∈ ℤ)
445, 29, 30, 31, 2pzriprnglem10 21449 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4543, 44mpancom 688 . . . . . . . . . . . . 13 (𝑟 ∈ ℤ → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4645eqcomd 2741 . . . . . . . . . . . 12 (𝑟 ∈ ℤ → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4746adantr 480 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4838, 42, 47rspcedvd 3603 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] )
4948ex 412 . . . . . . . . 9 (𝑟 ∈ ℤ → (𝑝 = (ℤ × {𝑟}) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] ))
5037, 49impbid 212 . . . . . . . 8 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
5150abbidv 2801 . . . . . . 7 (𝑟 ∈ ℤ → {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] } = {𝑝𝑝 = (ℤ × {𝑟})})
52 iunsn 5042 . . . . . . 7 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] }
53 df-sn 4602 . . . . . . 7 {(ℤ × {𝑟})} = {𝑝𝑝 = (ℤ × {𝑟})}
5451, 52, 533eqtr4g 2795 . . . . . 6 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5527, 54eqtrid 2782 . . . . 5 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5655iuneq2i 4989 . . . 4 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5723, 56eqtri 2758 . . 3 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5821, 22, 573eqtr3i 2766 . 2 {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
591, 14, 583eqtr3i 2766 1 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  Vcvv 3459  {csn 4601  cop 4607   ciun 4967   × cxp 5652  cfv 6530  (class class class)co 7403  [cec 8715   / cqs 8716  0cc0 11127  cz 12586  Basecbs 17226  s cress 17249   /s cqus 17517   ×s cxps 17518   ~QG cqg 19103  Rngcrng 20110  1rcur 20139  ringczring 21405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-prds 17459  df-imas 17520  df-qus 17521  df-xps 17522  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-subg 19104  df-eqg 19106  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-subrng 20504  df-subrg 20528  df-cnfld 21314  df-zring 21406
This theorem is referenced by:  pzriprnglem12  21451  pzriprnglem13  21452  pzriprnglem14  21453
  Copyright terms: Public domain W3C validator