MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem11 Structured version   Visualization version   GIF version

Theorem pzriprnglem11 21397
Description: Lemma 11 for pzriprng 21403: The base set of the quotient of 𝑅 and 𝐽. (Contributed by AV, 22-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem11 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Distinct variable group:   ,𝑟
Allowed substitution hints:   𝑄(𝑟)   𝑅(𝑟)   1 (𝑟)   𝐼(𝑟)   𝐽(𝑟)

Proof of Theorem pzriprnglem11
Dummy variables 𝑒 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 8722 . 2 ((ℤ × ℤ) / ) = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
2 pzriprng.g . . 3 = (𝑅 ~QG 𝐼)
3 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
43a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑄 = (𝑅 /s ))
5 pzriprng.r . . . . . . 7 𝑅 = (ℤring ×sring)
65pzriprnglem2 21388 . . . . . 6 (Base‘𝑅) = (ℤ × ℤ)
76eqcomi 2736 . . . . 5 (ℤ × ℤ) = (Base‘𝑅)
87a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → (ℤ × ℤ) = (Base‘𝑅))
9 ovexd 7449 . . . . 5 ( = (𝑅 ~QG 𝐼) → (𝑅 ~QG 𝐼) ∈ V)
102, 9eqeltrid 2832 . . . 4 ( = (𝑅 ~QG 𝐼) → ∈ V)
115pzriprnglem1 21387 . . . . 5 𝑅 ∈ Rng
1211a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑅 ∈ Rng)
134, 8, 10, 12qusbas 17512 . . 3 ( = (𝑅 ~QG 𝐼) → ((ℤ × ℤ) / ) = (Base‘𝑄))
142, 13ax-mp 5 . 2 ((ℤ × ℤ) / ) = (Base‘𝑄)
15 nfcv 2898 . . . 4 𝑠{𝑒𝑒 = [𝑝] }
16 nfcv 2898 . . . 4 𝑟{𝑒𝑒 = [𝑝] }
17 nfcv 2898 . . . 4 𝑝{𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
18 eceq1 8754 . . . . . 6 (𝑝 = ⟨𝑠, 𝑟⟩ → [𝑝] = [⟨𝑠, 𝑟⟩] )
1918eqeq2d 2738 . . . . 5 (𝑝 = ⟨𝑠, 𝑟⟩ → (𝑒 = [𝑝] 𝑒 = [⟨𝑠, 𝑟⟩] ))
2019abbidv 2796 . . . 4 (𝑝 = ⟨𝑠, 𝑟⟩ → {𝑒𝑒 = [𝑝] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] })
2115, 16, 17, 20iunxpf 5845 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
22 iunab 5048 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
23 iuncom 4998 . . . 4 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
24 df-sn 4625 . . . . . . . . 9 {[⟨𝑠, 𝑟⟩] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
2524eqcomi 2736 . . . . . . . 8 {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] }
2625a1i 11 . . . . . . 7 (𝑠 ∈ ℤ → {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] })
2726iuneq2i 5012 . . . . . 6 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] }
28 simpr 484 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = [⟨𝑠, 𝑟⟩] )
29 pzriprng.i . . . . . . . . . . . . . . 15 𝐼 = (ℤ × {0})
30 pzriprng.j . . . . . . . . . . . . . . 15 𝐽 = (𝑅s 𝐼)
31 pzriprng.1 . . . . . . . . . . . . . . 15 1 = (1r𝐽)
325, 29, 30, 31, 2pzriprnglem10 21396 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3332ancoms 458 . . . . . . . . . . . . 13 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3433adantr 480 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3528, 34eqtrd 2767 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = (ℤ × {𝑟}))
3635ex 412 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
3736rexlimdva 3150 . . . . . . . . 9 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
38 0zd 12586 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 0 ∈ ℤ)
39 simpr 484 . . . . . . . . . . . 12 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 𝑝 = (ℤ × {𝑟}))
40 opeq1 4869 . . . . . . . . . . . . 13 (𝑠 = 0 → ⟨𝑠, 𝑟⟩ = ⟨0, 𝑟⟩)
4140eceq1d 8755 . . . . . . . . . . . 12 (𝑠 = 0 → [⟨𝑠, 𝑟⟩] = [⟨0, 𝑟⟩] )
4239, 41eqeqan12d 2741 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) ∧ 𝑠 = 0) → (𝑝 = [⟨𝑠, 𝑟⟩] ↔ (ℤ × {𝑟}) = [⟨0, 𝑟⟩] ))
43 0zd 12586 . . . . . . . . . . . . . 14 (𝑟 ∈ ℤ → 0 ∈ ℤ)
445, 29, 30, 31, 2pzriprnglem10 21396 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4543, 44mpancom 687 . . . . . . . . . . . . 13 (𝑟 ∈ ℤ → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4645eqcomd 2733 . . . . . . . . . . . 12 (𝑟 ∈ ℤ → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4746adantr 480 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4838, 42, 47rspcedvd 3609 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] )
4948ex 412 . . . . . . . . 9 (𝑟 ∈ ℤ → (𝑝 = (ℤ × {𝑟}) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] ))
5037, 49impbid 211 . . . . . . . 8 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
5150abbidv 2796 . . . . . . 7 (𝑟 ∈ ℤ → {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] } = {𝑝𝑝 = (ℤ × {𝑟})})
52 iunsn 5063 . . . . . . 7 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] }
53 df-sn 4625 . . . . . . 7 {(ℤ × {𝑟})} = {𝑝𝑝 = (ℤ × {𝑟})}
5451, 52, 533eqtr4g 2792 . . . . . 6 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5527, 54eqtrid 2779 . . . . 5 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5655iuneq2i 5012 . . . 4 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5723, 56eqtri 2755 . . 3 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5821, 22, 573eqtr3i 2763 . 2 {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
591, 14, 583eqtr3i 2763 1 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  {cab 2704  wrex 3065  Vcvv 3469  {csn 4624  cop 4630   ciun 4991   × cxp 5670  cfv 6542  (class class class)co 7414  [cec 8714   / cqs 8715  0cc0 11124  cz 12574  Basecbs 17165  s cress 17194   /s cqus 17472   ×s cxps 17473   ~QG cqg 19061  Rngcrng 20076  1rcur 20105  ringczring 21352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-addf 11203
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8716  df-ec 8718  df-qs 8722  df-map 8836  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9451  df-inf 9452  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-fz 13503  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-starv 17233  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-unif 17241  df-hom 17242  df-cco 17243  df-0g 17408  df-prds 17414  df-imas 17475  df-qus 17476  df-xps 17477  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-grp 18878  df-minusg 18879  df-subg 19062  df-eqg 19064  df-cmn 19721  df-abl 19722  df-mgp 20059  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-subrng 20465  df-subrg 20490  df-cnfld 21260  df-zring 21353
This theorem is referenced by:  pzriprnglem12  21398  pzriprnglem13  21399  pzriprnglem14  21400
  Copyright terms: Public domain W3C validator