Step | Hyp | Ref
| Expression |
1 | | df-qs 8709 |
. 2
⊢ ((ℤ
× ℤ) / ∼ ) = {𝑒 ∣ ∃𝑝 ∈ (ℤ ×
ℤ)𝑒 = [𝑝] ∼ } |
2 | | pzriprng.g |
. . 3
⊢ ∼ =
(𝑅 ~QG
𝐼) |
3 | | pzriprng.q |
. . . . 5
⊢ 𝑄 = (𝑅 /s ∼ ) |
4 | 3 | a1i 11 |
. . . 4
⊢ ( ∼ =
(𝑅 ~QG
𝐼) → 𝑄 = (𝑅 /s ∼ )) |
5 | | pzriprng.r |
. . . . . . 7
⊢ 𝑅 = (ℤring
×s ℤring) |
6 | 5 | pzriprnglem2 46806 |
. . . . . 6
⊢
(Base‘𝑅) =
(ℤ × ℤ) |
7 | 6 | eqcomi 2742 |
. . . . 5
⊢ (ℤ
× ℤ) = (Base‘𝑅) |
8 | 7 | a1i 11 |
. . . 4
⊢ ( ∼ =
(𝑅 ~QG
𝐼) → (ℤ ×
ℤ) = (Base‘𝑅)) |
9 | | ovexd 7444 |
. . . . 5
⊢ ( ∼ =
(𝑅 ~QG
𝐼) → (𝑅 ~QG 𝐼) ∈ V) |
10 | 2, 9 | eqeltrid 2838 |
. . . 4
⊢ ( ∼ =
(𝑅 ~QG
𝐼) → ∼ ∈
V) |
11 | 5 | pzriprnglem1 46805 |
. . . . 5
⊢ 𝑅 ∈ Rng |
12 | 11 | a1i 11 |
. . . 4
⊢ ( ∼ =
(𝑅 ~QG
𝐼) → 𝑅 ∈ Rng) |
13 | 4, 8, 10, 12 | qusbas 17491 |
. . 3
⊢ ( ∼ =
(𝑅 ~QG
𝐼) → ((ℤ ×
ℤ) / ∼ ) =
(Base‘𝑄)) |
14 | 2, 13 | ax-mp 5 |
. 2
⊢ ((ℤ
× ℤ) / ∼ ) =
(Base‘𝑄) |
15 | | nfcv 2904 |
. . . 4
⊢
Ⅎ𝑠{𝑒 ∣ 𝑒 = [𝑝] ∼ } |
16 | | nfcv 2904 |
. . . 4
⊢
Ⅎ𝑟{𝑒 ∣ 𝑒 = [𝑝] ∼ } |
17 | | nfcv 2904 |
. . . 4
⊢
Ⅎ𝑝{𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } |
18 | | eceq1 8741 |
. . . . . 6
⊢ (𝑝 = ⟨𝑠, 𝑟⟩ → [𝑝] ∼ = [⟨𝑠, 𝑟⟩] ∼ ) |
19 | 18 | eqeq2d 2744 |
. . . . 5
⊢ (𝑝 = ⟨𝑠, 𝑟⟩ → (𝑒 = [𝑝] ∼ ↔ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ )) |
20 | 19 | abbidv 2802 |
. . . 4
⊢ (𝑝 = ⟨𝑠, 𝑟⟩ → {𝑒 ∣ 𝑒 = [𝑝] ∼ } = {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ }) |
21 | 15, 16, 17, 20 | iunxpf 5849 |
. . 3
⊢ ∪ 𝑝 ∈ (ℤ × ℤ){𝑒 ∣ 𝑒 = [𝑝] ∼ } = ∪ 𝑠 ∈ ℤ ∪ 𝑟 ∈ ℤ {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } |
22 | | iunab 5055 |
. . 3
⊢ ∪ 𝑝 ∈ (ℤ × ℤ){𝑒 ∣ 𝑒 = [𝑝] ∼ } = {𝑒 ∣ ∃𝑝 ∈ (ℤ ×
ℤ)𝑒 = [𝑝] ∼ } |
23 | | iuncom 5005 |
. . . 4
⊢ ∪ 𝑠 ∈ ℤ ∪ 𝑟 ∈ ℤ {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } = ∪ 𝑟 ∈ ℤ ∪ 𝑠 ∈ ℤ {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } |
24 | | df-sn 4630 |
. . . . . . . . 9
⊢
{[⟨𝑠, 𝑟⟩] ∼ } = {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } |
25 | 24 | eqcomi 2742 |
. . . . . . . 8
⊢ {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } = {[⟨𝑠, 𝑟⟩] ∼ } |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ (𝑠 ∈ ℤ → {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } = {[⟨𝑠, 𝑟⟩] ∼ }) |
27 | 26 | iuneq2i 5019 |
. . . . . 6
⊢ ∪ 𝑠 ∈ ℤ {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } = ∪ 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] ∼ } |
28 | | simpr 486 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ∼ ) → 𝑝 = [⟨𝑠, 𝑟⟩] ∼ ) |
29 | | pzriprng.i |
. . . . . . . . . . . . . . 15
⊢ 𝐼 = (ℤ ×
{0}) |
30 | | pzriprng.j |
. . . . . . . . . . . . . . 15
⊢ 𝐽 = (𝑅 ↾s 𝐼) |
31 | | pzriprng.1 |
. . . . . . . . . . . . . . 15
⊢ 1 =
(1r‘𝐽) |
32 | 5, 29, 30, 31, 2 | pzriprnglem10 46814 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) →
[⟨𝑠, 𝑟⟩] ∼ = (ℤ ×
{𝑟})) |
33 | 32 | ancoms 460 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) →
[⟨𝑠, 𝑟⟩] ∼ = (ℤ ×
{𝑟})) |
34 | 33 | adantr 482 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ∼ ) →
[⟨𝑠, 𝑟⟩] ∼ = (ℤ ×
{𝑟})) |
35 | 28, 34 | eqtrd 2773 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ∼ ) → 𝑝 = (ℤ × {𝑟})) |
36 | 35 | ex 414 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑝 = [⟨𝑠, 𝑟⟩] ∼ → 𝑝 = (ℤ × {𝑟}))) |
37 | 36 | rexlimdva 3156 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℤ →
(∃𝑠 ∈ ℤ
𝑝 = [⟨𝑠, 𝑟⟩] ∼ → 𝑝 = (ℤ × {𝑟}))) |
38 | | 0zd 12570 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 0 ∈
ℤ) |
39 | | simpr 486 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 𝑝 = (ℤ × {𝑟})) |
40 | | opeq1 4874 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 0 → ⟨𝑠, 𝑟⟩ = ⟨0, 𝑟⟩) |
41 | 40 | eceq1d 8742 |
. . . . . . . . . . . 12
⊢ (𝑠 = 0 → [⟨𝑠, 𝑟⟩] ∼ = [⟨0, 𝑟⟩] ∼ ) |
42 | 39, 41 | eqeqan12d 2747 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) ∧ 𝑠 = 0) → (𝑝 = [⟨𝑠, 𝑟⟩] ∼ ↔ (ℤ
× {𝑟}) = [⟨0,
𝑟⟩] ∼ )) |
43 | | 0zd 12570 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ℤ → 0 ∈
ℤ) |
44 | 5, 29, 30, 31, 2 | pzriprnglem10 46814 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℤ ∧ 𝑟
∈ ℤ) → [⟨0, 𝑟⟩] ∼ = (ℤ ×
{𝑟})) |
45 | 43, 44 | mpancom 687 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℤ → [⟨0,
𝑟⟩] ∼ = (ℤ ×
{𝑟})) |
46 | 45 | eqcomd 2739 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ ℤ → (ℤ
× {𝑟}) = [⟨0,
𝑟⟩] ∼ ) |
47 | 46 | adantr 482 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → (ℤ ×
{𝑟}) = [⟨0, 𝑟⟩] ∼ ) |
48 | 38, 42, 47 | rspcedvd 3615 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] ∼ ) |
49 | 48 | ex 414 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℤ → (𝑝 = (ℤ × {𝑟}) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] ∼ )) |
50 | 37, 49 | impbid 211 |
. . . . . . . 8
⊢ (𝑟 ∈ ℤ →
(∃𝑠 ∈ ℤ
𝑝 = [⟨𝑠, 𝑟⟩] ∼ ↔ 𝑝 = (ℤ × {𝑟}))) |
51 | 50 | abbidv 2802 |
. . . . . . 7
⊢ (𝑟 ∈ ℤ → {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] ∼ } = {𝑝 ∣ 𝑝 = (ℤ × {𝑟})}) |
52 | | iunsn 5070 |
. . . . . . 7
⊢ ∪ 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] ∼ } = {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] ∼ } |
53 | | df-sn 4630 |
. . . . . . 7
⊢ {(ℤ
× {𝑟})} = {𝑝 ∣ 𝑝 = (ℤ × {𝑟})} |
54 | 51, 52, 53 | 3eqtr4g 2798 |
. . . . . 6
⊢ (𝑟 ∈ ℤ → ∪ 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] ∼ } = {(ℤ
× {𝑟})}) |
55 | 27, 54 | eqtrid 2785 |
. . . . 5
⊢ (𝑟 ∈ ℤ → ∪ 𝑠 ∈ ℤ {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } = {(ℤ
× {𝑟})}) |
56 | 55 | iuneq2i 5019 |
. . . 4
⊢ ∪ 𝑟 ∈ ℤ ∪ 𝑠 ∈ ℤ {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } = ∪ 𝑟 ∈ ℤ {(ℤ × {𝑟})} |
57 | 23, 56 | eqtri 2761 |
. . 3
⊢ ∪ 𝑠 ∈ ℤ ∪ 𝑟 ∈ ℤ {𝑒 ∣ 𝑒 = [⟨𝑠, 𝑟⟩] ∼ } = ∪ 𝑟 ∈ ℤ {(ℤ × {𝑟})} |
58 | 21, 22, 57 | 3eqtr3i 2769 |
. 2
⊢ {𝑒 ∣ ∃𝑝 ∈ (ℤ ×
ℤ)𝑒 = [𝑝] ∼ } = ∪ 𝑟 ∈ ℤ {(ℤ × {𝑟})} |
59 | 1, 14, 58 | 3eqtr3i 2769 |
1
⊢
(Base‘𝑄) =
∪ 𝑟 ∈ ℤ {(ℤ × {𝑟})} |