MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem11 Structured version   Visualization version   GIF version

Theorem pzriprnglem11 21408
Description: Lemma 11 for pzriprng 21414: The base set of the quotient of 𝑅 and 𝐽. (Contributed by AV, 22-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem11 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Distinct variable group:   ,𝑟
Allowed substitution hints:   𝑄(𝑟)   𝑅(𝑟)   1 (𝑟)   𝐼(𝑟)   𝐽(𝑟)

Proof of Theorem pzriprnglem11
Dummy variables 𝑒 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 8680 . 2 ((ℤ × ℤ) / ) = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
2 pzriprng.g . . 3 = (𝑅 ~QG 𝐼)
3 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
43a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑄 = (𝑅 /s ))
5 pzriprng.r . . . . . . 7 𝑅 = (ℤring ×sring)
65pzriprnglem2 21399 . . . . . 6 (Base‘𝑅) = (ℤ × ℤ)
76eqcomi 2739 . . . . 5 (ℤ × ℤ) = (Base‘𝑅)
87a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → (ℤ × ℤ) = (Base‘𝑅))
9 ovexd 7425 . . . . 5 ( = (𝑅 ~QG 𝐼) → (𝑅 ~QG 𝐼) ∈ V)
102, 9eqeltrid 2833 . . . 4 ( = (𝑅 ~QG 𝐼) → ∈ V)
115pzriprnglem1 21398 . . . . 5 𝑅 ∈ Rng
1211a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑅 ∈ Rng)
134, 8, 10, 12qusbas 17515 . . 3 ( = (𝑅 ~QG 𝐼) → ((ℤ × ℤ) / ) = (Base‘𝑄))
142, 13ax-mp 5 . 2 ((ℤ × ℤ) / ) = (Base‘𝑄)
15 nfcv 2892 . . . 4 𝑠{𝑒𝑒 = [𝑝] }
16 nfcv 2892 . . . 4 𝑟{𝑒𝑒 = [𝑝] }
17 nfcv 2892 . . . 4 𝑝{𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
18 eceq1 8713 . . . . . 6 (𝑝 = ⟨𝑠, 𝑟⟩ → [𝑝] = [⟨𝑠, 𝑟⟩] )
1918eqeq2d 2741 . . . . 5 (𝑝 = ⟨𝑠, 𝑟⟩ → (𝑒 = [𝑝] 𝑒 = [⟨𝑠, 𝑟⟩] ))
2019abbidv 2796 . . . 4 (𝑝 = ⟨𝑠, 𝑟⟩ → {𝑒𝑒 = [𝑝] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] })
2115, 16, 17, 20iunxpf 5815 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
22 iunab 5018 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
23 iuncom 4966 . . . 4 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
24 df-sn 4593 . . . . . . . . 9 {[⟨𝑠, 𝑟⟩] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
2524eqcomi 2739 . . . . . . . 8 {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] }
2625a1i 11 . . . . . . 7 (𝑠 ∈ ℤ → {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] })
2726iuneq2i 4980 . . . . . 6 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] }
28 simpr 484 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = [⟨𝑠, 𝑟⟩] )
29 pzriprng.i . . . . . . . . . . . . . . 15 𝐼 = (ℤ × {0})
30 pzriprng.j . . . . . . . . . . . . . . 15 𝐽 = (𝑅s 𝐼)
31 pzriprng.1 . . . . . . . . . . . . . . 15 1 = (1r𝐽)
325, 29, 30, 31, 2pzriprnglem10 21407 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3332ancoms 458 . . . . . . . . . . . . 13 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3433adantr 480 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3528, 34eqtrd 2765 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = (ℤ × {𝑟}))
3635ex 412 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
3736rexlimdva 3135 . . . . . . . . 9 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
38 0zd 12548 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 0 ∈ ℤ)
39 simpr 484 . . . . . . . . . . . 12 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 𝑝 = (ℤ × {𝑟}))
40 opeq1 4840 . . . . . . . . . . . . 13 (𝑠 = 0 → ⟨𝑠, 𝑟⟩ = ⟨0, 𝑟⟩)
4140eceq1d 8714 . . . . . . . . . . . 12 (𝑠 = 0 → [⟨𝑠, 𝑟⟩] = [⟨0, 𝑟⟩] )
4239, 41eqeqan12d 2744 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) ∧ 𝑠 = 0) → (𝑝 = [⟨𝑠, 𝑟⟩] ↔ (ℤ × {𝑟}) = [⟨0, 𝑟⟩] ))
43 0zd 12548 . . . . . . . . . . . . . 14 (𝑟 ∈ ℤ → 0 ∈ ℤ)
445, 29, 30, 31, 2pzriprnglem10 21407 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4543, 44mpancom 688 . . . . . . . . . . . . 13 (𝑟 ∈ ℤ → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4645eqcomd 2736 . . . . . . . . . . . 12 (𝑟 ∈ ℤ → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4746adantr 480 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4838, 42, 47rspcedvd 3593 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] )
4948ex 412 . . . . . . . . 9 (𝑟 ∈ ℤ → (𝑝 = (ℤ × {𝑟}) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] ))
5037, 49impbid 212 . . . . . . . 8 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
5150abbidv 2796 . . . . . . 7 (𝑟 ∈ ℤ → {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] } = {𝑝𝑝 = (ℤ × {𝑟})})
52 iunsn 5033 . . . . . . 7 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] }
53 df-sn 4593 . . . . . . 7 {(ℤ × {𝑟})} = {𝑝𝑝 = (ℤ × {𝑟})}
5451, 52, 533eqtr4g 2790 . . . . . 6 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5527, 54eqtrid 2777 . . . . 5 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5655iuneq2i 4980 . . . 4 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5723, 56eqtri 2753 . . 3 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5821, 22, 573eqtr3i 2761 . 2 {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
591, 14, 583eqtr3i 2761 1 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  {csn 4592  cop 4598   ciun 4958   × cxp 5639  cfv 6514  (class class class)co 7390  [cec 8672   / cqs 8673  0cc0 11075  cz 12536  Basecbs 17186  s cress 17207   /s cqus 17475   ×s cxps 17476   ~QG cqg 19061  Rngcrng 20068  1rcur 20097  ringczring 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-imas 17478  df-qus 17479  df-xps 17480  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-eqg 19064  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-cnfld 21272  df-zring 21364
This theorem is referenced by:  pzriprnglem12  21409  pzriprnglem13  21410  pzriprnglem14  21411
  Copyright terms: Public domain W3C validator