MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem11 Structured version   Visualization version   GIF version

Theorem pzriprnglem11 21519
Description: Lemma 11 for pzriprng 21525: The base set of the quotient of 𝑅 and 𝐽. (Contributed by AV, 22-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem11 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Distinct variable group:   ,𝑟
Allowed substitution hints:   𝑄(𝑟)   𝑅(𝑟)   1 (𝑟)   𝐼(𝑟)   𝐽(𝑟)

Proof of Theorem pzriprnglem11
Dummy variables 𝑒 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 8749 . 2 ((ℤ × ℤ) / ) = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
2 pzriprng.g . . 3 = (𝑅 ~QG 𝐼)
3 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
43a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑄 = (𝑅 /s ))
5 pzriprng.r . . . . . . 7 𝑅 = (ℤring ×sring)
65pzriprnglem2 21510 . . . . . 6 (Base‘𝑅) = (ℤ × ℤ)
76eqcomi 2743 . . . . 5 (ℤ × ℤ) = (Base‘𝑅)
87a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → (ℤ × ℤ) = (Base‘𝑅))
9 ovexd 7465 . . . . 5 ( = (𝑅 ~QG 𝐼) → (𝑅 ~QG 𝐼) ∈ V)
102, 9eqeltrid 2842 . . . 4 ( = (𝑅 ~QG 𝐼) → ∈ V)
115pzriprnglem1 21509 . . . . 5 𝑅 ∈ Rng
1211a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑅 ∈ Rng)
134, 8, 10, 12qusbas 17591 . . 3 ( = (𝑅 ~QG 𝐼) → ((ℤ × ℤ) / ) = (Base‘𝑄))
142, 13ax-mp 5 . 2 ((ℤ × ℤ) / ) = (Base‘𝑄)
15 nfcv 2902 . . . 4 𝑠{𝑒𝑒 = [𝑝] }
16 nfcv 2902 . . . 4 𝑟{𝑒𝑒 = [𝑝] }
17 nfcv 2902 . . . 4 𝑝{𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
18 eceq1 8782 . . . . . 6 (𝑝 = ⟨𝑠, 𝑟⟩ → [𝑝] = [⟨𝑠, 𝑟⟩] )
1918eqeq2d 2745 . . . . 5 (𝑝 = ⟨𝑠, 𝑟⟩ → (𝑒 = [𝑝] 𝑒 = [⟨𝑠, 𝑟⟩] ))
2019abbidv 2805 . . . 4 (𝑝 = ⟨𝑠, 𝑟⟩ → {𝑒𝑒 = [𝑝] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] })
2115, 16, 17, 20iunxpf 5861 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
22 iunab 5055 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
23 iuncom 5003 . . . 4 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
24 df-sn 4631 . . . . . . . . 9 {[⟨𝑠, 𝑟⟩] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
2524eqcomi 2743 . . . . . . . 8 {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] }
2625a1i 11 . . . . . . 7 (𝑠 ∈ ℤ → {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] })
2726iuneq2i 5017 . . . . . 6 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] }
28 simpr 484 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = [⟨𝑠, 𝑟⟩] )
29 pzriprng.i . . . . . . . . . . . . . . 15 𝐼 = (ℤ × {0})
30 pzriprng.j . . . . . . . . . . . . . . 15 𝐽 = (𝑅s 𝐼)
31 pzriprng.1 . . . . . . . . . . . . . . 15 1 = (1r𝐽)
325, 29, 30, 31, 2pzriprnglem10 21518 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3332ancoms 458 . . . . . . . . . . . . 13 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3433adantr 480 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3528, 34eqtrd 2774 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = (ℤ × {𝑟}))
3635ex 412 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
3736rexlimdva 3152 . . . . . . . . 9 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
38 0zd 12622 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 0 ∈ ℤ)
39 simpr 484 . . . . . . . . . . . 12 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 𝑝 = (ℤ × {𝑟}))
40 opeq1 4877 . . . . . . . . . . . . 13 (𝑠 = 0 → ⟨𝑠, 𝑟⟩ = ⟨0, 𝑟⟩)
4140eceq1d 8783 . . . . . . . . . . . 12 (𝑠 = 0 → [⟨𝑠, 𝑟⟩] = [⟨0, 𝑟⟩] )
4239, 41eqeqan12d 2748 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) ∧ 𝑠 = 0) → (𝑝 = [⟨𝑠, 𝑟⟩] ↔ (ℤ × {𝑟}) = [⟨0, 𝑟⟩] ))
43 0zd 12622 . . . . . . . . . . . . . 14 (𝑟 ∈ ℤ → 0 ∈ ℤ)
445, 29, 30, 31, 2pzriprnglem10 21518 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4543, 44mpancom 688 . . . . . . . . . . . . 13 (𝑟 ∈ ℤ → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4645eqcomd 2740 . . . . . . . . . . . 12 (𝑟 ∈ ℤ → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4746adantr 480 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4838, 42, 47rspcedvd 3623 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] )
4948ex 412 . . . . . . . . 9 (𝑟 ∈ ℤ → (𝑝 = (ℤ × {𝑟}) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] ))
5037, 49impbid 212 . . . . . . . 8 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
5150abbidv 2805 . . . . . . 7 (𝑟 ∈ ℤ → {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] } = {𝑝𝑝 = (ℤ × {𝑟})})
52 iunsn 5070 . . . . . . 7 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] }
53 df-sn 4631 . . . . . . 7 {(ℤ × {𝑟})} = {𝑝𝑝 = (ℤ × {𝑟})}
5451, 52, 533eqtr4g 2799 . . . . . 6 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5527, 54eqtrid 2786 . . . . 5 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5655iuneq2i 5017 . . . 4 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5723, 56eqtri 2762 . . 3 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5821, 22, 573eqtr3i 2770 . 2 {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
591, 14, 583eqtr3i 2770 1 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wcel 2105  {cab 2711  wrex 3067  Vcvv 3477  {csn 4630  cop 4636   ciun 4995   × cxp 5686  cfv 6562  (class class class)co 7430  [cec 8741   / cqs 8742  0cc0 11152  cz 12610  Basecbs 17244  s cress 17273   /s cqus 17551   ×s cxps 17552   ~QG cqg 19152  Rngcrng 20169  1rcur 20198  ringczring 21474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-prds 17493  df-imas 17554  df-qus 17555  df-xps 17556  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-subg 19153  df-eqg 19155  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-subrng 20562  df-subrg 20586  df-cnfld 21382  df-zring 21475
This theorem is referenced by:  pzriprnglem12  21520  pzriprnglem13  21521  pzriprnglem14  21522
  Copyright terms: Public domain W3C validator