MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem11 Structured version   Visualization version   GIF version

Theorem pzriprnglem11 21401
Description: Lemma 11 for pzriprng 21407: The base set of the quotient of 𝑅 and 𝐽. (Contributed by AV, 22-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem11 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Distinct variable group:   ,𝑟
Allowed substitution hints:   𝑄(𝑟)   𝑅(𝑟)   1 (𝑟)   𝐼(𝑟)   𝐽(𝑟)

Proof of Theorem pzriprnglem11
Dummy variables 𝑒 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 8677 . 2 ((ℤ × ℤ) / ) = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
2 pzriprng.g . . 3 = (𝑅 ~QG 𝐼)
3 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
43a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑄 = (𝑅 /s ))
5 pzriprng.r . . . . . . 7 𝑅 = (ℤring ×sring)
65pzriprnglem2 21392 . . . . . 6 (Base‘𝑅) = (ℤ × ℤ)
76eqcomi 2738 . . . . 5 (ℤ × ℤ) = (Base‘𝑅)
87a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → (ℤ × ℤ) = (Base‘𝑅))
9 ovexd 7422 . . . . 5 ( = (𝑅 ~QG 𝐼) → (𝑅 ~QG 𝐼) ∈ V)
102, 9eqeltrid 2832 . . . 4 ( = (𝑅 ~QG 𝐼) → ∈ V)
115pzriprnglem1 21391 . . . . 5 𝑅 ∈ Rng
1211a1i 11 . . . 4 ( = (𝑅 ~QG 𝐼) → 𝑅 ∈ Rng)
134, 8, 10, 12qusbas 17508 . . 3 ( = (𝑅 ~QG 𝐼) → ((ℤ × ℤ) / ) = (Base‘𝑄))
142, 13ax-mp 5 . 2 ((ℤ × ℤ) / ) = (Base‘𝑄)
15 nfcv 2891 . . . 4 𝑠{𝑒𝑒 = [𝑝] }
16 nfcv 2891 . . . 4 𝑟{𝑒𝑒 = [𝑝] }
17 nfcv 2891 . . . 4 𝑝{𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
18 eceq1 8710 . . . . . 6 (𝑝 = ⟨𝑠, 𝑟⟩ → [𝑝] = [⟨𝑠, 𝑟⟩] )
1918eqeq2d 2740 . . . . 5 (𝑝 = ⟨𝑠, 𝑟⟩ → (𝑒 = [𝑝] 𝑒 = [⟨𝑠, 𝑟⟩] ))
2019abbidv 2795 . . . 4 (𝑝 = ⟨𝑠, 𝑟⟩ → {𝑒𝑒 = [𝑝] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] })
2115, 16, 17, 20iunxpf 5812 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
22 iunab 5015 . . 3 𝑝 ∈ (ℤ × ℤ){𝑒𝑒 = [𝑝] } = {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] }
23 iuncom 4963 . . . 4 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
24 df-sn 4590 . . . . . . . . 9 {[⟨𝑠, 𝑟⟩] } = {𝑒𝑒 = [⟨𝑠, 𝑟⟩] }
2524eqcomi 2738 . . . . . . . 8 {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] }
2625a1i 11 . . . . . . 7 (𝑠 ∈ ℤ → {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {[⟨𝑠, 𝑟⟩] })
2726iuneq2i 4977 . . . . . 6 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] }
28 simpr 484 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = [⟨𝑠, 𝑟⟩] )
29 pzriprng.i . . . . . . . . . . . . . . 15 𝐼 = (ℤ × {0})
30 pzriprng.j . . . . . . . . . . . . . . 15 𝐽 = (𝑅s 𝐼)
31 pzriprng.1 . . . . . . . . . . . . . . 15 1 = (1r𝐽)
325, 29, 30, 31, 2pzriprnglem10 21400 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3332ancoms 458 . . . . . . . . . . . . 13 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3433adantr 480 . . . . . . . . . . . 12 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → [⟨𝑠, 𝑟⟩] = (ℤ × {𝑟}))
3528, 34eqtrd 2764 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) ∧ 𝑝 = [⟨𝑠, 𝑟⟩] ) → 𝑝 = (ℤ × {𝑟}))
3635ex 412 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
3736rexlimdva 3134 . . . . . . . . 9 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
38 0zd 12541 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 0 ∈ ℤ)
39 simpr 484 . . . . . . . . . . . 12 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → 𝑝 = (ℤ × {𝑟}))
40 opeq1 4837 . . . . . . . . . . . . 13 (𝑠 = 0 → ⟨𝑠, 𝑟⟩ = ⟨0, 𝑟⟩)
4140eceq1d 8711 . . . . . . . . . . . 12 (𝑠 = 0 → [⟨𝑠, 𝑟⟩] = [⟨0, 𝑟⟩] )
4239, 41eqeqan12d 2743 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) ∧ 𝑠 = 0) → (𝑝 = [⟨𝑠, 𝑟⟩] ↔ (ℤ × {𝑟}) = [⟨0, 𝑟⟩] ))
43 0zd 12541 . . . . . . . . . . . . . 14 (𝑟 ∈ ℤ → 0 ∈ ℤ)
445, 29, 30, 31, 2pzriprnglem10 21400 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑟 ∈ ℤ) → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4543, 44mpancom 688 . . . . . . . . . . . . 13 (𝑟 ∈ ℤ → [⟨0, 𝑟⟩] = (ℤ × {𝑟}))
4645eqcomd 2735 . . . . . . . . . . . 12 (𝑟 ∈ ℤ → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4746adantr 480 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → (ℤ × {𝑟}) = [⟨0, 𝑟⟩] )
4838, 42, 47rspcedvd 3590 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝑝 = (ℤ × {𝑟})) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] )
4948ex 412 . . . . . . . . 9 (𝑟 ∈ ℤ → (𝑝 = (ℤ × {𝑟}) → ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] ))
5037, 49impbid 212 . . . . . . . 8 (𝑟 ∈ ℤ → (∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] 𝑝 = (ℤ × {𝑟})))
5150abbidv 2795 . . . . . . 7 (𝑟 ∈ ℤ → {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] } = {𝑝𝑝 = (ℤ × {𝑟})})
52 iunsn 5030 . . . . . . 7 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {𝑝 ∣ ∃𝑠 ∈ ℤ 𝑝 = [⟨𝑠, 𝑟⟩] }
53 df-sn 4590 . . . . . . 7 {(ℤ × {𝑟})} = {𝑝𝑝 = (ℤ × {𝑟})}
5451, 52, 533eqtr4g 2789 . . . . . 6 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {[⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5527, 54eqtrid 2776 . . . . 5 (𝑟 ∈ ℤ → 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = {(ℤ × {𝑟})})
5655iuneq2i 4977 . . . 4 𝑟 ∈ ℤ 𝑠 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5723, 56eqtri 2752 . . 3 𝑠 ∈ ℤ 𝑟 ∈ ℤ {𝑒𝑒 = [⟨𝑠, 𝑟⟩] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
5821, 22, 573eqtr3i 2760 . 2 {𝑒 ∣ ∃𝑝 ∈ (ℤ × ℤ)𝑒 = [𝑝] } = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
591, 14, 583eqtr3i 2760 1 (Base‘𝑄) = 𝑟 ∈ ℤ {(ℤ × {𝑟})}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  {csn 4589  cop 4595   ciun 4955   × cxp 5636  cfv 6511  (class class class)co 7387  [cec 8669   / cqs 8670  0cc0 11068  cz 12529  Basecbs 17179  s cress 17200   /s cqus 17468   ×s cxps 17469   ~QG cqg 19054  Rngcrng 20061  1rcur 20090  ringczring 21356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-imas 17471  df-qus 17472  df-xps 17473  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-eqg 19057  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-cnfld 21265  df-zring 21357
This theorem is referenced by:  pzriprnglem12  21402  pzriprnglem13  21403  pzriprnglem14  21404
  Copyright terms: Public domain W3C validator