MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliuni Structured version   Visualization version   GIF version

Theorem eliuni 5021
Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021.)
Hypothesis
Ref Expression
eliuni.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
eliuni ((𝐴𝐷𝐸𝐶) → 𝐸 𝑥𝐷 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eliuni
StepHypRef Expression
1 eliuni.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
21eleq2d 2830 . . 3 (𝑥 = 𝐴 → (𝐸𝐵𝐸𝐶))
32rspcev 3635 . 2 ((𝐴𝐷𝐸𝐶) → ∃𝑥𝐷 𝐸𝐵)
4 eliun 5019 . 2 (𝐸 𝑥𝐷 𝐵 ↔ ∃𝑥𝐷 𝐸𝐵)
53, 4sylibr 234 1 ((𝐴𝐷𝐸𝐶) → 𝐸 𝑥𝐷 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-iun 5017
This theorem is referenced by:  oeordi  8643  fseqdom  10095  cfsmolem  10339  axdc3lem2  10520  prmreclem5  16967  efgs1b  19778  lbsextlem2  21184  pmatcoe1fsupp  22728  vitalilem2  25663  weiunse  36434  grpods  42151  oacl2g  43292  omcl2  43295  ofoafg  43316  cnrefiisplem  45750
  Copyright terms: Public domain W3C validator