MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliuni Structured version   Visualization version   GIF version

Theorem eliuni 4930
Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021.)
Hypothesis
Ref Expression
eliuni.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
eliuni ((𝐴𝐷𝐸𝐶) → 𝐸 𝑥𝐷 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eliuni
StepHypRef Expression
1 eliuni.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
21eleq2d 2824 . . 3 (𝑥 = 𝐴 → (𝐸𝐵𝐸𝐶))
32rspcev 3561 . 2 ((𝐴𝐷𝐸𝐶) → ∃𝑥𝐷 𝐸𝐵)
4 eliun 4928 . 2 (𝐸 𝑥𝐷 𝐵 ↔ ∃𝑥𝐷 𝐸𝐵)
53, 4sylibr 233 1 ((𝐴𝐷𝐸𝐶) → 𝐸 𝑥𝐷 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-iun 4926
This theorem is referenced by:  oeordi  8418  fseqdom  9782  cfsmolem  10026  axdc3lem2  10207  prmreclem5  16621  efgs1b  19342  lbsextlem2  20421  pmatcoe1fsupp  21850  vitalilem2  24773  cnrefiisplem  43370
  Copyright terms: Public domain W3C validator