MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliuni Structured version   Visualization version   GIF version

Theorem eliuni 5003
Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021.)
Hypothesis
Ref Expression
eliuni.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
eliuni ((𝐴𝐷𝐸𝐶) → 𝐸 𝑥𝐷 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eliuni
StepHypRef Expression
1 eliuni.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
21eleq2d 2818 . . 3 (𝑥 = 𝐴 → (𝐸𝐵𝐸𝐶))
32rspcev 3612 . 2 ((𝐴𝐷𝐸𝐶) → ∃𝑥𝐷 𝐸𝐵)
4 eliun 5001 . 2 (𝐸 𝑥𝐷 𝐵 ↔ ∃𝑥𝐷 𝐸𝐵)
53, 4sylibr 233 1 ((𝐴𝐷𝐸𝐶) → 𝐸 𝑥𝐷 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wrex 3069   ciun 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-v 3475  df-iun 4999
This theorem is referenced by:  oeordi  8593  fseqdom  10027  cfsmolem  10271  axdc3lem2  10452  prmreclem5  16860  efgs1b  19652  lbsextlem2  21006  pmatcoe1fsupp  22523  vitalilem2  25458  oacl2g  42543  omcl2  42546  ofoafg  42567  cnrefiisplem  45004
  Copyright terms: Public domain W3C validator