MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliuni Structured version   Visualization version   GIF version

Theorem eliuni 4947
Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021.)
Hypothesis
Ref Expression
eliuni.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
eliuni ((𝐴𝐷𝐸𝐶) → 𝐸 𝑥𝐷 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eliuni
StepHypRef Expression
1 eliuni.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
21eleq2d 2817 . . 3 (𝑥 = 𝐴 → (𝐸𝐵𝐸𝐶))
32rspcev 3577 . 2 ((𝐴𝐷𝐸𝐶) → ∃𝑥𝐷 𝐸𝐵)
4 eliun 4945 . 2 (𝐸 𝑥𝐷 𝐵 ↔ ∃𝑥𝐷 𝐸𝐵)
53, 4sylibr 234 1 ((𝐴𝐷𝐸𝐶) → 𝐸 𝑥𝐷 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056   ciun 4941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-iun 4943
This theorem is referenced by:  oeordi  8502  fseqdom  9914  cfsmolem  10158  axdc3lem2  10339  prmreclem5  16829  efgs1b  19646  lbsextlem2  21094  pmatcoe1fsupp  22614  vitalilem2  25535  weiunse  36501  grpods  42226  oacl2g  43362  omcl2  43365  ofoafg  43386  cnrefiisplem  45866
  Copyright terms: Public domain W3C validator