![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliuni | Structured version Visualization version GIF version |
Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021.) |
Ref | Expression |
---|---|
eliuni.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eliuni | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶) → 𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliuni.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | 1 | eleq2d 2818 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐸 ∈ 𝐵 ↔ 𝐸 ∈ 𝐶)) |
3 | 2 | rspcev 3612 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶) → ∃𝑥 ∈ 𝐷 𝐸 ∈ 𝐵) |
4 | eliun 5001 | . 2 ⊢ (𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ↔ ∃𝑥 ∈ 𝐷 𝐸 ∈ 𝐵) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶) → 𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-v 3475 df-iun 4999 |
This theorem is referenced by: oeordi 8593 fseqdom 10027 cfsmolem 10271 axdc3lem2 10452 prmreclem5 16860 efgs1b 19652 lbsextlem2 21006 pmatcoe1fsupp 22523 vitalilem2 25458 oacl2g 42543 omcl2 42546 ofoafg 42567 cnrefiisplem 45004 |
Copyright terms: Public domain | W3C validator |