| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliuni | Structured version Visualization version GIF version | ||
| Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021.) |
| Ref | Expression |
|---|---|
| eliuni.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eliuni | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶) → 𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliuni.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2819 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐸 ∈ 𝐵 ↔ 𝐸 ∈ 𝐶)) |
| 3 | 2 | rspcev 3573 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶) → ∃𝑥 ∈ 𝐷 𝐸 ∈ 𝐵) |
| 4 | eliun 4945 | . 2 ⊢ (𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ↔ ∃𝑥 ∈ 𝐷 𝐸 ∈ 𝐵) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶) → 𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-v 3439 df-iun 4943 |
| This theorem is referenced by: oeordi 8508 fseqdom 9924 cfsmolem 10168 axdc3lem2 10349 prmreclem5 16834 efgs1b 19650 lbsextlem2 21098 pmatcoe1fsupp 22617 vitalilem2 25538 weiunse 36533 grpods 42307 oacl2g 43447 omcl2 43450 ofoafg 43471 cnrefiisplem 45951 |
| Copyright terms: Public domain | W3C validator |