MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncom4 Structured version   Visualization version   GIF version

Theorem iuncom4 4948
Description: Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iuncom4 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵

Proof of Theorem iuncom4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 3057 . . . . . . 7 (∃𝑧𝐵 𝑦𝑧 ↔ ∃𝑧(𝑧𝐵𝑦𝑧))
21rexbii 3079 . . . . . 6 (∃𝑥𝐴𝑧𝐵 𝑦𝑧 ↔ ∃𝑥𝐴𝑧(𝑧𝐵𝑦𝑧))
3 rexcom4 3259 . . . . . 6 (∃𝑥𝐴𝑧(𝑧𝐵𝑦𝑧) ↔ ∃𝑧𝑥𝐴 (𝑧𝐵𝑦𝑧))
42, 3bitri 275 . . . . 5 (∃𝑥𝐴𝑧𝐵 𝑦𝑧 ↔ ∃𝑧𝑥𝐴 (𝑧𝐵𝑦𝑧))
5 r19.41v 3162 . . . . . 6 (∃𝑥𝐴 (𝑧𝐵𝑦𝑧) ↔ (∃𝑥𝐴 𝑧𝐵𝑦𝑧))
65exbii 1849 . . . . 5 (∃𝑧𝑥𝐴 (𝑧𝐵𝑦𝑧) ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
74, 6bitri 275 . . . 4 (∃𝑥𝐴𝑧𝐵 𝑦𝑧 ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
8 eluni2 4860 . . . . 5 (𝑦 𝐵 ↔ ∃𝑧𝐵 𝑦𝑧)
98rexbii 3079 . . . 4 (∃𝑥𝐴 𝑦 𝐵 ↔ ∃𝑥𝐴𝑧𝐵 𝑦𝑧)
10 df-rex 3057 . . . . 5 (∃𝑧 𝑥𝐴 𝐵𝑦𝑧 ↔ ∃𝑧(𝑧 𝑥𝐴 𝐵𝑦𝑧))
11 eliun 4943 . . . . . . 7 (𝑧 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧𝐵)
1211anbi1i 624 . . . . . 6 ((𝑧 𝑥𝐴 𝐵𝑦𝑧) ↔ (∃𝑥𝐴 𝑧𝐵𝑦𝑧))
1312exbii 1849 . . . . 5 (∃𝑧(𝑧 𝑥𝐴 𝐵𝑦𝑧) ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
1410, 13bitri 275 . . . 4 (∃𝑧 𝑥𝐴 𝐵𝑦𝑧 ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
157, 9, 143bitr4i 303 . . 3 (∃𝑥𝐴 𝑦 𝐵 ↔ ∃𝑧 𝑥𝐴 𝐵𝑦𝑧)
16 eliun 4943 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦 𝐵)
17 eluni2 4860 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑧 𝑥𝐴 𝐵𝑦𝑧)
1815, 16, 173bitr4i 303 . 2 (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵)
1918eqriv 2728 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056   cuni 4856   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-v 3438  df-uni 4857  df-iun 4941
This theorem is referenced by:  ituniiun  10313  tgidm  22895  txcmplem2  23557
  Copyright terms: Public domain W3C validator