MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncom4 Structured version   Visualization version   GIF version

Theorem iuncom4 4663
Description: Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iuncom4 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵

Proof of Theorem iuncom4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 3067 . . . . . . 7 (∃𝑧𝐵 𝑦𝑧 ↔ ∃𝑧(𝑧𝐵𝑦𝑧))
21rexbii 3189 . . . . . 6 (∃𝑥𝐴𝑧𝐵 𝑦𝑧 ↔ ∃𝑥𝐴𝑧(𝑧𝐵𝑦𝑧))
3 rexcom4 3377 . . . . . 6 (∃𝑥𝐴𝑧(𝑧𝐵𝑦𝑧) ↔ ∃𝑧𝑥𝐴 (𝑧𝐵𝑦𝑧))
42, 3bitri 264 . . . . 5 (∃𝑥𝐴𝑧𝐵 𝑦𝑧 ↔ ∃𝑧𝑥𝐴 (𝑧𝐵𝑦𝑧))
5 r19.41v 3237 . . . . . 6 (∃𝑥𝐴 (𝑧𝐵𝑦𝑧) ↔ (∃𝑥𝐴 𝑧𝐵𝑦𝑧))
65exbii 1924 . . . . 5 (∃𝑧𝑥𝐴 (𝑧𝐵𝑦𝑧) ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
74, 6bitri 264 . . . 4 (∃𝑥𝐴𝑧𝐵 𝑦𝑧 ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
8 eluni2 4579 . . . . 5 (𝑦 𝐵 ↔ ∃𝑧𝐵 𝑦𝑧)
98rexbii 3189 . . . 4 (∃𝑥𝐴 𝑦 𝐵 ↔ ∃𝑥𝐴𝑧𝐵 𝑦𝑧)
10 df-rex 3067 . . . . 5 (∃𝑧 𝑥𝐴 𝐵𝑦𝑧 ↔ ∃𝑧(𝑧 𝑥𝐴 𝐵𝑦𝑧))
11 eliun 4659 . . . . . . 7 (𝑧 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧𝐵)
1211anbi1i 610 . . . . . 6 ((𝑧 𝑥𝐴 𝐵𝑦𝑧) ↔ (∃𝑥𝐴 𝑧𝐵𝑦𝑧))
1312exbii 1924 . . . . 5 (∃𝑧(𝑧 𝑥𝐴 𝐵𝑦𝑧) ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
1410, 13bitri 264 . . . 4 (∃𝑧 𝑥𝐴 𝐵𝑦𝑧 ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
157, 9, 143bitr4i 292 . . 3 (∃𝑥𝐴 𝑦 𝐵 ↔ ∃𝑧 𝑥𝐴 𝐵𝑦𝑧)
16 eliun 4659 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦 𝐵)
17 eluni2 4579 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑧 𝑥𝐴 𝐵𝑦𝑧)
1815, 16, 173bitr4i 292 . 2 (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵)
1918eqriv 2768 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wex 1852  wcel 2145  wrex 3062   cuni 4575   ciun 4655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-v 3353  df-uni 4576  df-iun 4657
This theorem is referenced by:  ituniiun  9449  tgidm  21004  txcmplem2  21665
  Copyright terms: Public domain W3C validator