MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jccir Structured version   Visualization version   GIF version

Theorem jccir 521
Description: Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i 30338. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by AV, 20-Aug-2019.)
Hypotheses
Ref Expression
jccir.1 (𝜑𝜓)
jccir.2 (𝜓𝜒)
Assertion
Ref Expression
jccir (𝜑 → (𝜓𝜒))

Proof of Theorem jccir
StepHypRef Expression
1 jccir.1 . 2 (𝜑𝜓)
2 jccir.2 . . 3 (𝜓𝜒)
31, 2syl 17 . 2 (𝜑𝜒)
41, 3jca 511 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  jccil  522  oelim2  8559  maxprmfct  16679  chpmat1dlem  22722  chpdmatlem2  22726  leordtvallem1  23097  leordtvallem2  23098  mbfmax  25550  wlklnwwlkln2lem  29812  0wlkonlem1  30047  2cycl2d  35126  relowlpssretop  37352  ntrclsk13  44060  smonoord  47372
  Copyright terms: Public domain W3C validator