Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jccir | Structured version Visualization version GIF version |
Description: Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i 28674. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by AV, 20-Aug-2019.) |
Ref | Expression |
---|---|
jccir.1 | ⊢ (𝜑 → 𝜓) |
jccir.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
jccir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jccir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jccir.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: jccil 522 oelim2 8388 maxprmfct 16342 chpmat1dlem 21892 chpdmatlem2 21896 leordtvallem1 22269 leordtvallem2 22270 mbfmax 24718 wlklnwwlkln2lem 28148 0wlkonlem1 28383 2cycl2d 33001 relowlpssretop 35462 ntrclsk13 41570 smonoord 44711 |
Copyright terms: Public domain | W3C validator |