Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  jccir Structured version   Visualization version   GIF version

Theorem jccir 525
 Description: Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i 28203. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by AV, 20-Aug-2019.)
Hypotheses
Ref Expression
jccir.1 (𝜑𝜓)
jccir.2 (𝜓𝜒)
Assertion
Ref Expression
jccir (𝜑 → (𝜓𝜒))

Proof of Theorem jccir
StepHypRef Expression
1 jccir.1 . 2 (𝜑𝜓)
2 jccir.2 . . 3 (𝜓𝜒)
31, 2syl 17 . 2 (𝜑𝜒)
41, 3jca 515 1 (𝜑 → (𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400 This theorem is referenced by:  jccil  526  oelim2  8219  maxprmfct  16053  chpmat1dlem  21449  chpdmatlem2  21453  leordtvallem1  21824  leordtvallem2  21825  mbfmax  24262  wlklnwwlkln2lem  27677  0wlkonlem1  27912  2cycl2d  32471  relowlpssretop  34753  ntrclsk13  40721  smonoord  43841
 Copyright terms: Public domain W3C validator