| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jccir | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i 30428. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by AV, 20-Aug-2019.) |
| Ref | Expression |
|---|---|
| jccir.1 | ⊢ (𝜑 → 𝜓) |
| jccir.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| jccir | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jccir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jccir.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: jccil 522 oelim2 8633 maxprmfct 16746 chpmat1dlem 22841 chpdmatlem2 22845 leordtvallem1 23218 leordtvallem2 23219 mbfmax 25684 wlklnwwlkln2lem 29902 0wlkonlem1 30137 2cycl2d 35144 relowlpssretop 37365 ntrclsk13 44084 smonoord 47358 |
| Copyright terms: Public domain | W3C validator |