| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leordtvallem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for leordtval 23128. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
| leordtval.2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) |
| Ref | Expression |
|---|---|
| leordtvallem2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.2 | . 2 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) | |
| 2 | icossxr 13332 | . . . . . 6 ⊢ (-∞[,)𝑥) ⊆ ℝ* | |
| 3 | sseqin2 4170 | . . . . . 6 ⊢ ((-∞[,)𝑥) ⊆ ℝ* ↔ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥)) | |
| 4 | 2, 3 | mpbi 230 | . . . . 5 ⊢ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥) |
| 5 | mnfxr 11169 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
| 6 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
| 7 | elico1 13288 | . . . . . . . 8 ⊢ ((-∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥))) | |
| 8 | 5, 6, 7 | sylancr 587 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥))) |
| 9 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
| 10 | mnfle 13034 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ* → -∞ ≤ 𝑦) | |
| 11 | 9, 10 | jccir 521 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦)) |
| 12 | 11 | biantrurd 532 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥))) |
| 13 | df-3an 1088 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥) ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥)) | |
| 14 | 12, 13 | bitr4di 289 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥))) |
| 15 | xrltnle 11179 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) | |
| 16 | 15 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
| 17 | 8, 14, 16 | 3bitr2d 307 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ ¬ 𝑥 ≤ 𝑦)) |
| 18 | 17 | rabbi2dva 4173 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (ℝ* ∩ (-∞[,)𝑥)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| 19 | 4, 18 | eqtr3id 2780 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (-∞[,)𝑥) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| 20 | 19 | mpteq2ia 5184 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| 21 | 20 | rneqi 5876 | . 2 ⊢ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| 22 | 1, 21 | eqtri 2754 | 1 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 (class class class)co 7346 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 (,]cioc 13246 [,)cico 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 |
| This theorem is referenced by: leordtval2 23127 leordtval 23128 |
| Copyright terms: Public domain | W3C validator |