| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leordtvallem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for leordtval 23100. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
| leordtval.2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) |
| Ref | Expression |
|---|---|
| leordtvallem2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.2 | . 2 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) | |
| 2 | icossxr 13393 | . . . . . 6 ⊢ (-∞[,)𝑥) ⊆ ℝ* | |
| 3 | sseqin2 4186 | . . . . . 6 ⊢ ((-∞[,)𝑥) ⊆ ℝ* ↔ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥)) | |
| 4 | 2, 3 | mpbi 230 | . . . . 5 ⊢ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥) |
| 5 | mnfxr 11231 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
| 6 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
| 7 | elico1 13349 | . . . . . . . 8 ⊢ ((-∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥))) | |
| 8 | 5, 6, 7 | sylancr 587 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥))) |
| 9 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
| 10 | mnfle 13095 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ* → -∞ ≤ 𝑦) | |
| 11 | 9, 10 | jccir 521 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦)) |
| 12 | 11 | biantrurd 532 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥))) |
| 13 | df-3an 1088 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥) ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥)) | |
| 14 | 12, 13 | bitr4di 289 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥))) |
| 15 | xrltnle 11241 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) | |
| 16 | 15 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
| 17 | 8, 14, 16 | 3bitr2d 307 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ ¬ 𝑥 ≤ 𝑦)) |
| 18 | 17 | rabbi2dva 4189 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (ℝ* ∩ (-∞[,)𝑥)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| 19 | 4, 18 | eqtr3id 2778 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (-∞[,)𝑥) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| 20 | 19 | mpteq2ia 5202 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| 21 | 20 | rneqi 5901 | . 2 ⊢ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| 22 | 1, 21 | eqtri 2752 | 1 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ∩ cin 3913 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 (class class class)co 7387 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 (,]cioc 13307 [,)cico 13308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 |
| This theorem is referenced by: leordtval2 23099 leordtval 23100 |
| Copyright terms: Public domain | W3C validator |