MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem2 Structured version   Visualization version   GIF version

Theorem leordtvallem2 23235
Description: Lemma for leordtval 23237. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
Assertion
Ref Expression
leordtvallem2 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem leordtvallem2
StepHypRef Expression
1 leordtval.2 . 2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
2 icossxr 13469 . . . . . 6 (-∞[,)𝑥) ⊆ ℝ*
3 sseqin2 4231 . . . . . 6 ((-∞[,)𝑥) ⊆ ℝ* ↔ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥))
42, 3mpbi 230 . . . . 5 (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥)
5 mnfxr 11316 . . . . . . . 8 -∞ ∈ ℝ*
6 simpl 482 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
7 elico1 13427 . . . . . . . 8 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
85, 6, 7sylancr 587 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
9 simpr 484 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
10 mnfle 13174 . . . . . . . . . 10 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
119, 10jccir 521 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦))
1211biantrurd 532 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥)))
13 df-3an 1088 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥) ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥))
1412, 13bitr4di 289 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
15 xrltnle 11326 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
1615ancoms 458 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
178, 14, 163bitr2d 307 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ ¬ 𝑥𝑦))
1817rabbi2dva 4234 . . . . 5 (𝑥 ∈ ℝ* → (ℝ* ∩ (-∞[,)𝑥)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
194, 18eqtr3id 2789 . . . 4 (𝑥 ∈ ℝ* → (-∞[,)𝑥) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
2019mpteq2ia 5251 . . 3 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
2120rneqi 5951 . 2 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
221, 21eqtri 2763 1 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  cin 3962  wss 3963   class class class wbr 5148  cmpt 5231  ran crn 5690  (class class class)co 7431  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  (,]cioc 13385  [,)cico 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ico 13390
This theorem is referenced by:  leordtval2  23236  leordtval  23237
  Copyright terms: Public domain W3C validator