MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem2 Structured version   Visualization version   GIF version

Theorem leordtvallem2 23108
Description: Lemma for leordtval 23110. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
Assertion
Ref Expression
leordtvallem2 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem leordtvallem2
StepHypRef Expression
1 leordtval.2 . 2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
2 icossxr 13435 . . . . . 6 (-∞[,)𝑥) ⊆ ℝ*
3 sseqin2 4211 . . . . . 6 ((-∞[,)𝑥) ⊆ ℝ* ↔ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥))
42, 3mpbi 229 . . . . 5 (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥)
5 mnfxr 11295 . . . . . . . 8 -∞ ∈ ℝ*
6 simpl 482 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
7 elico1 13393 . . . . . . . 8 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
85, 6, 7sylancr 586 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
9 simpr 484 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
10 mnfle 13140 . . . . . . . . . 10 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
119, 10jccir 521 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦))
1211biantrurd 532 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥)))
13 df-3an 1087 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥) ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥))
1412, 13bitr4di 289 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
15 xrltnle 11305 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
1615ancoms 458 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
178, 14, 163bitr2d 307 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ ¬ 𝑥𝑦))
1817rabbi2dva 4213 . . . . 5 (𝑥 ∈ ℝ* → (ℝ* ∩ (-∞[,)𝑥)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
194, 18eqtr3id 2781 . . . 4 (𝑥 ∈ ℝ* → (-∞[,)𝑥) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
2019mpteq2ia 5245 . . 3 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
2120rneqi 5933 . 2 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
221, 21eqtri 2755 1 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  {crab 3427  cin 3943  wss 3944   class class class wbr 5142  cmpt 5225  ran crn 5673  (class class class)co 7414  +∞cpnf 11269  -∞cmnf 11270  *cxr 11271   < clt 11272  cle 11273  (,]cioc 13351  [,)cico 13352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-ico 13356
This theorem is referenced by:  leordtval2  23109  leordtval  23110
  Copyright terms: Public domain W3C validator