MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem2 Structured version   Visualization version   GIF version

Theorem leordtvallem2 21962
Description: Lemma for leordtval 21964. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
Assertion
Ref Expression
leordtvallem2 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem leordtvallem2
StepHypRef Expression
1 leordtval.2 . 2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
2 icossxr 12906 . . . . . 6 (-∞[,)𝑥) ⊆ ℝ*
3 sseqin2 4106 . . . . . 6 ((-∞[,)𝑥) ⊆ ℝ* ↔ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥))
42, 3mpbi 233 . . . . 5 (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥)
5 mnfxr 10776 . . . . . . . 8 -∞ ∈ ℝ*
6 simpl 486 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
7 elico1 12864 . . . . . . . 8 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
85, 6, 7sylancr 590 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
9 simpr 488 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
10 mnfle 12612 . . . . . . . . . 10 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
119, 10jccir 525 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦))
1211biantrurd 536 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥)))
13 df-3an 1090 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥) ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥))
1412, 13bitr4di 292 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
15 xrltnle 10786 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
1615ancoms 462 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
178, 14, 163bitr2d 310 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ ¬ 𝑥𝑦))
1817rabbi2dva 4108 . . . . 5 (𝑥 ∈ ℝ* → (ℝ* ∩ (-∞[,)𝑥)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
194, 18eqtr3id 2787 . . . 4 (𝑥 ∈ ℝ* → (-∞[,)𝑥) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
2019mpteq2ia 5121 . . 3 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
2120rneqi 5780 . 2 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
221, 21eqtri 2761 1 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  {crab 3057  cin 3842  wss 3843   class class class wbr 5030  cmpt 5110  ran crn 5526  (class class class)co 7170  +∞cpnf 10750  -∞cmnf 10751  *cxr 10752   < clt 10753  cle 10754  (,]cioc 12822  [,)cico 12823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-ico 12827
This theorem is referenced by:  leordtval2  21963  leordtval  21964
  Copyright terms: Public domain W3C validator