Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leordtvallem2 | Structured version Visualization version GIF version |
Description: Lemma for leordtval 22345. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
leordtval.2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) |
Ref | Expression |
---|---|
leordtvallem2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leordtval.2 | . 2 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) | |
2 | icossxr 13146 | . . . . . 6 ⊢ (-∞[,)𝑥) ⊆ ℝ* | |
3 | sseqin2 4154 | . . . . . 6 ⊢ ((-∞[,)𝑥) ⊆ ℝ* ↔ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥)) | |
4 | 2, 3 | mpbi 229 | . . . . 5 ⊢ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥) |
5 | mnfxr 11016 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
6 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
7 | elico1 13104 | . . . . . . . 8 ⊢ ((-∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥))) | |
8 | 5, 6, 7 | sylancr 586 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥))) |
9 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
10 | mnfle 12852 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ* → -∞ ≤ 𝑦) | |
11 | 9, 10 | jccir 521 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦)) |
12 | 11 | biantrurd 532 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥))) |
13 | df-3an 1087 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥) ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥)) | |
14 | 12, 13 | bitr4di 288 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥))) |
15 | xrltnle 11026 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) | |
16 | 15 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
17 | 8, 14, 16 | 3bitr2d 306 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ ¬ 𝑥 ≤ 𝑦)) |
18 | 17 | rabbi2dva 4156 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (ℝ* ∩ (-∞[,)𝑥)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
19 | 4, 18 | eqtr3id 2793 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (-∞[,)𝑥) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
20 | 19 | mpteq2ia 5181 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
21 | 20 | rneqi 5843 | . 2 ⊢ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
22 | 1, 21 | eqtri 2767 | 1 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {crab 3069 ∩ cin 3890 ⊆ wss 3891 class class class wbr 5078 ↦ cmpt 5161 ran crn 5589 (class class class)co 7268 +∞cpnf 10990 -∞cmnf 10991 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 (,]cioc 13062 [,)cico 13063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-ico 13067 |
This theorem is referenced by: leordtval2 22344 leordtval 22345 |
Copyright terms: Public domain | W3C validator |