MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim2 Structured version   Visualization version   GIF version

Theorem oelim2 8595
Description: Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oelim2 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem oelim2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 6429 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 0ellim 6428 . . . . . . 7 (Lim 𝐵 → ∅ ∈ 𝐵)
32adantl 483 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵)
4 oe0m1 8521 . . . . . . 7 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
54biimpa 478 . . . . . 6 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
61, 3, 5syl2anc 585 . . . . 5 ((𝐵𝐶 ∧ Lim 𝐵) → (∅ ↑o 𝐵) = ∅)
7 eldif 3959 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ 1o) ↔ (𝑥𝐵 ∧ ¬ 𝑥 ∈ 1o))
8 limord 6425 . . . . . . . . . . . 12 (Lim 𝐵 → Ord 𝐵)
9 ordelon 6389 . . . . . . . . . . . 12 ((Ord 𝐵𝑥𝐵) → 𝑥 ∈ On)
108, 9sylan 581 . . . . . . . . . . 11 ((Lim 𝐵𝑥𝐵) → 𝑥 ∈ On)
11 on0eln0 6421 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
12 el1o 8495 . . . . . . . . . . . . . 14 (𝑥 ∈ 1o𝑥 = ∅)
1312necon3bbii 2989 . . . . . . . . . . . . 13 𝑥 ∈ 1o𝑥 ≠ ∅)
1411, 13bitr4di 289 . . . . . . . . . . . 12 (𝑥 ∈ On → (∅ ∈ 𝑥 ↔ ¬ 𝑥 ∈ 1o))
15 oe0m1 8521 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥 ↔ (∅ ↑o 𝑥) = ∅))
1615biimpd 228 . . . . . . . . . . . 12 (𝑥 ∈ On → (∅ ∈ 𝑥 → (∅ ↑o 𝑥) = ∅))
1714, 16sylbird 260 . . . . . . . . . . 11 (𝑥 ∈ On → (¬ 𝑥 ∈ 1o → (∅ ↑o 𝑥) = ∅))
1810, 17syl 17 . . . . . . . . . 10 ((Lim 𝐵𝑥𝐵) → (¬ 𝑥 ∈ 1o → (∅ ↑o 𝑥) = ∅))
1918impr 456 . . . . . . . . 9 ((Lim 𝐵 ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ 1o)) → (∅ ↑o 𝑥) = ∅)
207, 19sylan2b 595 . . . . . . . 8 ((Lim 𝐵𝑥 ∈ (𝐵 ∖ 1o)) → (∅ ↑o 𝑥) = ∅)
2120iuneq2dv 5022 . . . . . . 7 (Lim 𝐵 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥) = 𝑥 ∈ (𝐵 ∖ 1o)∅)
22 df-1o 8466 . . . . . . . . . 10 1o = suc ∅
23 limsuc 7838 . . . . . . . . . . 11 (Lim 𝐵 → (∅ ∈ 𝐵 ↔ suc ∅ ∈ 𝐵))
242, 23mpbid 231 . . . . . . . . . 10 (Lim 𝐵 → suc ∅ ∈ 𝐵)
2522, 24eqeltrid 2838 . . . . . . . . 9 (Lim 𝐵 → 1o𝐵)
26 1on 8478 . . . . . . . . . 10 1o ∈ On
2726onirri 6478 . . . . . . . . 9 ¬ 1o ∈ 1o
28 eldif 3959 . . . . . . . . 9 (1o ∈ (𝐵 ∖ 1o) ↔ (1o𝐵 ∧ ¬ 1o ∈ 1o))
2925, 27, 28sylanblrc 591 . . . . . . . 8 (Lim 𝐵 → 1o ∈ (𝐵 ∖ 1o))
30 ne0i 4335 . . . . . . . 8 (1o ∈ (𝐵 ∖ 1o) → (𝐵 ∖ 1o) ≠ ∅)
31 iunconst 5007 . . . . . . . 8 ((𝐵 ∖ 1o) ≠ ∅ → 𝑥 ∈ (𝐵 ∖ 1o)∅ = ∅)
3229, 30, 313syl 18 . . . . . . 7 (Lim 𝐵 𝑥 ∈ (𝐵 ∖ 1o)∅ = ∅)
3321, 32eqtrd 2773 . . . . . 6 (Lim 𝐵 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥) = ∅)
3433adantl 483 . . . . 5 ((𝐵𝐶 ∧ Lim 𝐵) → 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥) = ∅)
356, 34eqtr4d 2776 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → (∅ ↑o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥))
36 oveq1 7416 . . . . 5 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
37 oveq1 7416 . . . . . 6 (𝐴 = ∅ → (𝐴o 𝑥) = (∅ ↑o 𝑥))
3837iuneq2d 5027 . . . . 5 (𝐴 = ∅ → 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) = 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥))
3936, 38eqeq12d 2749 . . . 4 (𝐴 = ∅ → ((𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ↔ (∅ ↑o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥)))
4035, 39imbitrrid 245 . . 3 (𝐴 = ∅ → ((𝐵𝐶 ∧ Lim 𝐵) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥)))
4140impcom 409 . 2 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
42 oelim 8534 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑦𝐵 (𝐴o 𝑦))
43 limsuc 7838 . . . . . . . . . . . . 13 (Lim 𝐵 → (𝑦𝐵 ↔ suc 𝑦𝐵))
4443biimpa 478 . . . . . . . . . . . 12 ((Lim 𝐵𝑦𝐵) → suc 𝑦𝐵)
45 nsuceq0 6448 . . . . . . . . . . . 12 suc 𝑦 ≠ ∅
46 dif1o 8500 . . . . . . . . . . . 12 (suc 𝑦 ∈ (𝐵 ∖ 1o) ↔ (suc 𝑦𝐵 ∧ suc 𝑦 ≠ ∅))
4744, 45, 46sylanblrc 591 . . . . . . . . . . 11 ((Lim 𝐵𝑦𝐵) → suc 𝑦 ∈ (𝐵 ∖ 1o))
4847ex 414 . . . . . . . . . 10 (Lim 𝐵 → (𝑦𝐵 → suc 𝑦 ∈ (𝐵 ∖ 1o)))
4948ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → suc 𝑦 ∈ (𝐵 ∖ 1o)))
50 sssucid 6445 . . . . . . . . . . 11 𝑦 ⊆ suc 𝑦
51 ordelon 6389 . . . . . . . . . . . . . . . . 17 ((Ord 𝐵𝑦𝐵) → 𝑦 ∈ On)
528, 51sylan 581 . . . . . . . . . . . . . . . 16 ((Lim 𝐵𝑦𝐵) → 𝑦 ∈ On)
53 onsuc 7799 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → suc 𝑦 ∈ On)
5452, 53jccir 523 . . . . . . . . . . . . . . 15 ((Lim 𝐵𝑦𝐵) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On))
55 id 22 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
56553expa 1119 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ On ∧ suc 𝑦 ∈ On) ∧ 𝐴 ∈ On) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
5756ancoms 460 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ (𝑦 ∈ On ∧ suc 𝑦 ∈ On)) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
5854, 57sylan2 594 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (Lim 𝐵𝑦𝐵)) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
5958anassrs 469 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
60 oewordi 8591 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑦 ⊆ suc 𝑦 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6159, 60sylan 581 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐵) ∧ 𝑦𝐵) ∧ ∅ ∈ 𝐴) → (𝑦 ⊆ suc 𝑦 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6261an32s 651 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) ∧ 𝑦𝐵) → (𝑦 ⊆ suc 𝑦 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6350, 62mpi 20 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) ∧ 𝑦𝐵) → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))
6463ex 414 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6549, 64jcad 514 . . . . . . . 8 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → (suc 𝑦 ∈ (𝐵 ∖ 1o) ∧ (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))))
66 oveq2 7417 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
6766sseq2d 4015 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐴o 𝑦) ⊆ (𝐴o 𝑥) ↔ (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6867rspcev 3613 . . . . . . . 8 ((suc 𝑦 ∈ (𝐵 ∖ 1o) ∧ (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)) → ∃𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥))
6965, 68syl6 35 . . . . . . 7 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → ∃𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥)))
7069ralrimiv 3146 . . . . . 6 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → ∀𝑦𝐵𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥))
71 iunss2 5053 . . . . . 6 (∀𝑦𝐵𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥) → 𝑦𝐵 (𝐴o 𝑦) ⊆ 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
7270, 71syl 17 . . . . 5 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → 𝑦𝐵 (𝐴o 𝑦) ⊆ 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
73 difss 4132 . . . . . . . 8 (𝐵 ∖ 1o) ⊆ 𝐵
74 iunss1 5012 . . . . . . . 8 ((𝐵 ∖ 1o) ⊆ 𝐵 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑥𝐵 (𝐴o 𝑥))
7573, 74ax-mp 5 . . . . . . 7 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑥𝐵 (𝐴o 𝑥)
76 oveq2 7417 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
7776cbviunv 5044 . . . . . . 7 𝑥𝐵 (𝐴o 𝑥) = 𝑦𝐵 (𝐴o 𝑦)
7875, 77sseqtri 4019 . . . . . 6 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑦𝐵 (𝐴o 𝑦)
7978a1i 11 . . . . 5 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑦𝐵 (𝐴o 𝑦))
8072, 79eqssd 4000 . . . 4 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → 𝑦𝐵 (𝐴o 𝑦) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
8180adantlrl 719 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝑦𝐵 (𝐴o 𝑦) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
8242, 81eqtrd 2773 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
8341, 82oe0lem 8513 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  cdif 3946  wss 3949  c0 4323   ciun 4998  Ord word 6364  Oncon0 6365  Lim wlim 6366  suc csuc 6367  (class class class)co 7409  1oc1o 8459  o coe 8465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-oexp 8472
This theorem is referenced by:  oelimcl  8600  oaabs2  8648  omabs  8650
  Copyright terms: Public domain W3C validator