MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim2 Structured version   Visualization version   GIF version

Theorem oelim2 7947
Description: Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oelim2 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem oelim2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 6030 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 0ellim 6029 . . . . . . 7 (Lim 𝐵 → ∅ ∈ 𝐵)
32adantl 475 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵)
4 oe0m1 7873 . . . . . . 7 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
54biimpa 470 . . . . . 6 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
61, 3, 5syl2anc 579 . . . . 5 ((𝐵𝐶 ∧ Lim 𝐵) → (∅ ↑o 𝐵) = ∅)
7 eldif 3808 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ 1o) ↔ (𝑥𝐵 ∧ ¬ 𝑥 ∈ 1o))
8 limord 6026 . . . . . . . . . . . 12 (Lim 𝐵 → Ord 𝐵)
9 ordelon 5991 . . . . . . . . . . . 12 ((Ord 𝐵𝑥𝐵) → 𝑥 ∈ On)
108, 9sylan 575 . . . . . . . . . . 11 ((Lim 𝐵𝑥𝐵) → 𝑥 ∈ On)
11 on0eln0 6022 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
12 el1o 7851 . . . . . . . . . . . . . 14 (𝑥 ∈ 1o𝑥 = ∅)
1312necon3bbii 3046 . . . . . . . . . . . . 13 𝑥 ∈ 1o𝑥 ≠ ∅)
1411, 13syl6bbr 281 . . . . . . . . . . . 12 (𝑥 ∈ On → (∅ ∈ 𝑥 ↔ ¬ 𝑥 ∈ 1o))
15 oe0m1 7873 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥 ↔ (∅ ↑o 𝑥) = ∅))
1615biimpd 221 . . . . . . . . . . . 12 (𝑥 ∈ On → (∅ ∈ 𝑥 → (∅ ↑o 𝑥) = ∅))
1714, 16sylbird 252 . . . . . . . . . . 11 (𝑥 ∈ On → (¬ 𝑥 ∈ 1o → (∅ ↑o 𝑥) = ∅))
1810, 17syl 17 . . . . . . . . . 10 ((Lim 𝐵𝑥𝐵) → (¬ 𝑥 ∈ 1o → (∅ ↑o 𝑥) = ∅))
1918impr 448 . . . . . . . . 9 ((Lim 𝐵 ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ 1o)) → (∅ ↑o 𝑥) = ∅)
207, 19sylan2b 587 . . . . . . . 8 ((Lim 𝐵𝑥 ∈ (𝐵 ∖ 1o)) → (∅ ↑o 𝑥) = ∅)
2120iuneq2dv 4764 . . . . . . 7 (Lim 𝐵 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥) = 𝑥 ∈ (𝐵 ∖ 1o)∅)
22 df-1o 7831 . . . . . . . . . . 11 1o = suc ∅
23 limsuc 7315 . . . . . . . . . . . 12 (Lim 𝐵 → (∅ ∈ 𝐵 ↔ suc ∅ ∈ 𝐵))
242, 23mpbid 224 . . . . . . . . . . 11 (Lim 𝐵 → suc ∅ ∈ 𝐵)
2522, 24syl5eqel 2910 . . . . . . . . . 10 (Lim 𝐵 → 1o𝐵)
26 1on 7838 . . . . . . . . . . 11 1o ∈ On
2726onirri 6073 . . . . . . . . . 10 ¬ 1o ∈ 1o
2825, 27jctir 516 . . . . . . . . 9 (Lim 𝐵 → (1o𝐵 ∧ ¬ 1o ∈ 1o))
29 eldif 3808 . . . . . . . . 9 (1o ∈ (𝐵 ∖ 1o) ↔ (1o𝐵 ∧ ¬ 1o ∈ 1o))
3028, 29sylibr 226 . . . . . . . 8 (Lim 𝐵 → 1o ∈ (𝐵 ∖ 1o))
31 ne0i 4152 . . . . . . . 8 (1o ∈ (𝐵 ∖ 1o) → (𝐵 ∖ 1o) ≠ ∅)
32 iunconst 4751 . . . . . . . 8 ((𝐵 ∖ 1o) ≠ ∅ → 𝑥 ∈ (𝐵 ∖ 1o)∅ = ∅)
3330, 31, 323syl 18 . . . . . . 7 (Lim 𝐵 𝑥 ∈ (𝐵 ∖ 1o)∅ = ∅)
3421, 33eqtrd 2861 . . . . . 6 (Lim 𝐵 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥) = ∅)
3534adantl 475 . . . . 5 ((𝐵𝐶 ∧ Lim 𝐵) → 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥) = ∅)
366, 35eqtr4d 2864 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → (∅ ↑o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥))
37 oveq1 6917 . . . . 5 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
38 oveq1 6917 . . . . . 6 (𝐴 = ∅ → (𝐴o 𝑥) = (∅ ↑o 𝑥))
3938iuneq2d 4769 . . . . 5 (𝐴 = ∅ → 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) = 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥))
4037, 39eqeq12d 2840 . . . 4 (𝐴 = ∅ → ((𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ↔ (∅ ↑o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥)))
4136, 40syl5ibr 238 . . 3 (𝐴 = ∅ → ((𝐵𝐶 ∧ Lim 𝐵) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥)))
4241impcom 398 . 2 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
43 oelim 7886 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑦𝐵 (𝐴o 𝑦))
44 limsuc 7315 . . . . . . . . . . . . 13 (Lim 𝐵 → (𝑦𝐵 ↔ suc 𝑦𝐵))
4544biimpa 470 . . . . . . . . . . . 12 ((Lim 𝐵𝑦𝐵) → suc 𝑦𝐵)
46 nsuceq0 6047 . . . . . . . . . . . . 13 suc 𝑦 ≠ ∅
4746a1i 11 . . . . . . . . . . . 12 ((Lim 𝐵𝑦𝐵) → suc 𝑦 ≠ ∅)
48 dif1o 7852 . . . . . . . . . . . 12 (suc 𝑦 ∈ (𝐵 ∖ 1o) ↔ (suc 𝑦𝐵 ∧ suc 𝑦 ≠ ∅))
4945, 47, 48sylanbrc 578 . . . . . . . . . . 11 ((Lim 𝐵𝑦𝐵) → suc 𝑦 ∈ (𝐵 ∖ 1o))
5049ex 403 . . . . . . . . . 10 (Lim 𝐵 → (𝑦𝐵 → suc 𝑦 ∈ (𝐵 ∖ 1o)))
5150ad2antlr 718 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → suc 𝑦 ∈ (𝐵 ∖ 1o)))
52 sssucid 6044 . . . . . . . . . . 11 𝑦 ⊆ suc 𝑦
53 ordelon 5991 . . . . . . . . . . . . . . . . 17 ((Ord 𝐵𝑦𝐵) → 𝑦 ∈ On)
548, 53sylan 575 . . . . . . . . . . . . . . . 16 ((Lim 𝐵𝑦𝐵) → 𝑦 ∈ On)
55 suceloni 7279 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → suc 𝑦 ∈ On)
5654, 55jccir 517 . . . . . . . . . . . . . . 15 ((Lim 𝐵𝑦𝐵) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On))
57 id 22 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
58573expa 1151 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ On ∧ suc 𝑦 ∈ On) ∧ 𝐴 ∈ On) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
5958ancoms 452 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ (𝑦 ∈ On ∧ suc 𝑦 ∈ On)) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
6056, 59sylan2 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (Lim 𝐵𝑦𝐵)) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
6160anassrs 461 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
62 oewordi 7943 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑦 ⊆ suc 𝑦 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6361, 62sylan 575 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐵) ∧ 𝑦𝐵) ∧ ∅ ∈ 𝐴) → (𝑦 ⊆ suc 𝑦 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6463an32s 642 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) ∧ 𝑦𝐵) → (𝑦 ⊆ suc 𝑦 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6552, 64mpi 20 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) ∧ 𝑦𝐵) → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))
6665ex 403 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6751, 66jcad 508 . . . . . . . 8 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → (suc 𝑦 ∈ (𝐵 ∖ 1o) ∧ (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))))
68 oveq2 6918 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
6968sseq2d 3858 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐴o 𝑦) ⊆ (𝐴o 𝑥) ↔ (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
7069rspcev 3526 . . . . . . . 8 ((suc 𝑦 ∈ (𝐵 ∖ 1o) ∧ (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)) → ∃𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥))
7167, 70syl6 35 . . . . . . 7 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → ∃𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥)))
7271ralrimiv 3174 . . . . . 6 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → ∀𝑦𝐵𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥))
73 iunss2 4787 . . . . . 6 (∀𝑦𝐵𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥) → 𝑦𝐵 (𝐴o 𝑦) ⊆ 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
7472, 73syl 17 . . . . 5 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → 𝑦𝐵 (𝐴o 𝑦) ⊆ 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
75 difss 3966 . . . . . . . 8 (𝐵 ∖ 1o) ⊆ 𝐵
76 iunss1 4754 . . . . . . . 8 ((𝐵 ∖ 1o) ⊆ 𝐵 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑥𝐵 (𝐴o 𝑥))
7775, 76ax-mp 5 . . . . . . 7 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑥𝐵 (𝐴o 𝑥)
78 oveq2 6918 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
7978cbviunv 4781 . . . . . . 7 𝑥𝐵 (𝐴o 𝑥) = 𝑦𝐵 (𝐴o 𝑦)
8077, 79sseqtri 3862 . . . . . 6 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑦𝐵 (𝐴o 𝑦)
8180a1i 11 . . . . 5 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑦𝐵 (𝐴o 𝑦))
8274, 81eqssd 3844 . . . 4 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → 𝑦𝐵 (𝐴o 𝑦) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
8382adantlrl 711 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝑦𝐵 (𝐴o 𝑦) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
8443, 83eqtrd 2861 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
8542, 84oe0lem 7865 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  cdif 3795  wss 3798  c0 4146   ciun 4742  Ord word 5966  Oncon0 5967  Lim wlim 5968  suc csuc 5969  (class class class)co 6910  1oc1o 7824  o coe 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-omul 7836  df-oexp 7837
This theorem is referenced by:  oelimcl  7952  oaabs2  7997  omabs  7999
  Copyright terms: Public domain W3C validator