MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim2 Structured version   Visualization version   GIF version

Theorem oelim2 8559
Description: Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oelim2 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem oelim2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 6397 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 0ellim 6396 . . . . . . 7 (Lim 𝐵 → ∅ ∈ 𝐵)
32adantl 481 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵)
4 oe0m1 8485 . . . . . . 7 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
54biimpa 476 . . . . . 6 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
61, 3, 5syl2anc 584 . . . . 5 ((𝐵𝐶 ∧ Lim 𝐵) → (∅ ↑o 𝐵) = ∅)
7 eldif 3924 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ 1o) ↔ (𝑥𝐵 ∧ ¬ 𝑥 ∈ 1o))
8 limord 6393 . . . . . . . . . . . 12 (Lim 𝐵 → Ord 𝐵)
9 ordelon 6356 . . . . . . . . . . . 12 ((Ord 𝐵𝑥𝐵) → 𝑥 ∈ On)
108, 9sylan 580 . . . . . . . . . . 11 ((Lim 𝐵𝑥𝐵) → 𝑥 ∈ On)
11 on0eln0 6389 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
12 el1o 8459 . . . . . . . . . . . . . 14 (𝑥 ∈ 1o𝑥 = ∅)
1312necon3bbii 2972 . . . . . . . . . . . . 13 𝑥 ∈ 1o𝑥 ≠ ∅)
1411, 13bitr4di 289 . . . . . . . . . . . 12 (𝑥 ∈ On → (∅ ∈ 𝑥 ↔ ¬ 𝑥 ∈ 1o))
15 oe0m1 8485 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥 ↔ (∅ ↑o 𝑥) = ∅))
1615biimpd 229 . . . . . . . . . . . 12 (𝑥 ∈ On → (∅ ∈ 𝑥 → (∅ ↑o 𝑥) = ∅))
1714, 16sylbird 260 . . . . . . . . . . 11 (𝑥 ∈ On → (¬ 𝑥 ∈ 1o → (∅ ↑o 𝑥) = ∅))
1810, 17syl 17 . . . . . . . . . 10 ((Lim 𝐵𝑥𝐵) → (¬ 𝑥 ∈ 1o → (∅ ↑o 𝑥) = ∅))
1918impr 454 . . . . . . . . 9 ((Lim 𝐵 ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ 1o)) → (∅ ↑o 𝑥) = ∅)
207, 19sylan2b 594 . . . . . . . 8 ((Lim 𝐵𝑥 ∈ (𝐵 ∖ 1o)) → (∅ ↑o 𝑥) = ∅)
2120iuneq2dv 4980 . . . . . . 7 (Lim 𝐵 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥) = 𝑥 ∈ (𝐵 ∖ 1o)∅)
22 df-1o 8434 . . . . . . . . . 10 1o = suc ∅
23 limsuc 7825 . . . . . . . . . . 11 (Lim 𝐵 → (∅ ∈ 𝐵 ↔ suc ∅ ∈ 𝐵))
242, 23mpbid 232 . . . . . . . . . 10 (Lim 𝐵 → suc ∅ ∈ 𝐵)
2522, 24eqeltrid 2832 . . . . . . . . 9 (Lim 𝐵 → 1o𝐵)
26 1on 8446 . . . . . . . . . 10 1o ∈ On
2726onirri 6447 . . . . . . . . 9 ¬ 1o ∈ 1o
28 eldif 3924 . . . . . . . . 9 (1o ∈ (𝐵 ∖ 1o) ↔ (1o𝐵 ∧ ¬ 1o ∈ 1o))
2925, 27, 28sylanblrc 590 . . . . . . . 8 (Lim 𝐵 → 1o ∈ (𝐵 ∖ 1o))
30 ne0i 4304 . . . . . . . 8 (1o ∈ (𝐵 ∖ 1o) → (𝐵 ∖ 1o) ≠ ∅)
31 iunconst 4965 . . . . . . . 8 ((𝐵 ∖ 1o) ≠ ∅ → 𝑥 ∈ (𝐵 ∖ 1o)∅ = ∅)
3229, 30, 313syl 18 . . . . . . 7 (Lim 𝐵 𝑥 ∈ (𝐵 ∖ 1o)∅ = ∅)
3321, 32eqtrd 2764 . . . . . 6 (Lim 𝐵 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥) = ∅)
3433adantl 481 . . . . 5 ((𝐵𝐶 ∧ Lim 𝐵) → 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥) = ∅)
356, 34eqtr4d 2767 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → (∅ ↑o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥))
36 oveq1 7394 . . . . 5 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
37 oveq1 7394 . . . . . 6 (𝐴 = ∅ → (𝐴o 𝑥) = (∅ ↑o 𝑥))
3837iuneq2d 4986 . . . . 5 (𝐴 = ∅ → 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) = 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥))
3936, 38eqeq12d 2745 . . . 4 (𝐴 = ∅ → ((𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ↔ (∅ ↑o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(∅ ↑o 𝑥)))
4035, 39imbitrrid 246 . . 3 (𝐴 = ∅ → ((𝐵𝐶 ∧ Lim 𝐵) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥)))
4140impcom 407 . 2 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
42 oelim 8498 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑦𝐵 (𝐴o 𝑦))
43 limsuc 7825 . . . . . . . . . . . . 13 (Lim 𝐵 → (𝑦𝐵 ↔ suc 𝑦𝐵))
4443biimpa 476 . . . . . . . . . . . 12 ((Lim 𝐵𝑦𝐵) → suc 𝑦𝐵)
45 nsuceq0 6417 . . . . . . . . . . . 12 suc 𝑦 ≠ ∅
46 dif1o 8464 . . . . . . . . . . . 12 (suc 𝑦 ∈ (𝐵 ∖ 1o) ↔ (suc 𝑦𝐵 ∧ suc 𝑦 ≠ ∅))
4744, 45, 46sylanblrc 590 . . . . . . . . . . 11 ((Lim 𝐵𝑦𝐵) → suc 𝑦 ∈ (𝐵 ∖ 1o))
4847ex 412 . . . . . . . . . 10 (Lim 𝐵 → (𝑦𝐵 → suc 𝑦 ∈ (𝐵 ∖ 1o)))
4948ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → suc 𝑦 ∈ (𝐵 ∖ 1o)))
50 sssucid 6414 . . . . . . . . . . 11 𝑦 ⊆ suc 𝑦
51 ordelon 6356 . . . . . . . . . . . . . . . . 17 ((Ord 𝐵𝑦𝐵) → 𝑦 ∈ On)
528, 51sylan 580 . . . . . . . . . . . . . . . 16 ((Lim 𝐵𝑦𝐵) → 𝑦 ∈ On)
53 onsuc 7787 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → suc 𝑦 ∈ On)
5452, 53jccir 521 . . . . . . . . . . . . . . 15 ((Lim 𝐵𝑦𝐵) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On))
55 id 22 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
56553expa 1118 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ On ∧ suc 𝑦 ∈ On) ∧ 𝐴 ∈ On) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
5756ancoms 458 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ (𝑦 ∈ On ∧ suc 𝑦 ∈ On)) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
5854, 57sylan2 593 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (Lim 𝐵𝑦𝐵)) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
5958anassrs 467 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On))
60 oewordi 8555 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑦 ⊆ suc 𝑦 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6159, 60sylan 580 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐵) ∧ 𝑦𝐵) ∧ ∅ ∈ 𝐴) → (𝑦 ⊆ suc 𝑦 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6261an32s 652 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) ∧ 𝑦𝐵) → (𝑦 ⊆ suc 𝑦 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6350, 62mpi 20 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) ∧ 𝑦𝐵) → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))
6463ex 412 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6549, 64jcad 512 . . . . . . . 8 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → (suc 𝑦 ∈ (𝐵 ∖ 1o) ∧ (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))))
66 oveq2 7395 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
6766sseq2d 3979 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐴o 𝑦) ⊆ (𝐴o 𝑥) ↔ (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
6867rspcev 3588 . . . . . . . 8 ((suc 𝑦 ∈ (𝐵 ∖ 1o) ∧ (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)) → ∃𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥))
6965, 68syl6 35 . . . . . . 7 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦𝐵 → ∃𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥)))
7069ralrimiv 3124 . . . . . 6 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → ∀𝑦𝐵𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥))
71 iunss2 5013 . . . . . 6 (∀𝑦𝐵𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ⊆ (𝐴o 𝑥) → 𝑦𝐵 (𝐴o 𝑦) ⊆ 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
7270, 71syl 17 . . . . 5 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → 𝑦𝐵 (𝐴o 𝑦) ⊆ 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
73 difss 4099 . . . . . . . 8 (𝐵 ∖ 1o) ⊆ 𝐵
74 iunss1 4970 . . . . . . . 8 ((𝐵 ∖ 1o) ⊆ 𝐵 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑥𝐵 (𝐴o 𝑥))
7573, 74ax-mp 5 . . . . . . 7 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑥𝐵 (𝐴o 𝑥)
76 oveq2 7395 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
7776cbviunv 5004 . . . . . . 7 𝑥𝐵 (𝐴o 𝑥) = 𝑦𝐵 (𝐴o 𝑦)
7875, 77sseqtri 3995 . . . . . 6 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑦𝐵 (𝐴o 𝑦)
7978a1i 11 . . . . 5 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥) ⊆ 𝑦𝐵 (𝐴o 𝑦))
8072, 79eqssd 3964 . . . 4 (((𝐴 ∈ On ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → 𝑦𝐵 (𝐴o 𝑦) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
8180adantlrl 720 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝑦𝐵 (𝐴o 𝑦) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
8242, 81eqtrd 2764 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
8341, 82oe0lem 8477 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑥 ∈ (𝐵 ∖ 1o)(𝐴o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3911  wss 3914  c0 4296   ciun 4955  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334  (class class class)co 7387  1oc1o 8427  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by:  oelimcl  8564  oaabs2  8613  omabs  8615
  Copyright terms: Public domain W3C validator