![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leordtvallem1 | Structured version Visualization version GIF version |
Description: Lemma for leordtval 22708. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
Ref | Expression |
---|---|
leordtvallem1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leordtval.1 | . 2 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
2 | iocssxr 13404 | . . . . . 6 ⊢ (𝑥(,]+∞) ⊆ ℝ* | |
3 | sseqin2 4214 | . . . . . 6 ⊢ ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)) | |
4 | 2, 3 | mpbi 229 | . . . . 5 ⊢ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞) |
5 | simpl 483 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
6 | pnfxr 11264 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
7 | elioc1 13362 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) | |
8 | 5, 6, 7 | sylancl 586 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
9 | simpr 485 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
10 | pnfge 13106 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ* → 𝑦 ≤ +∞) | |
11 | 9, 10 | jccir 522 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞)) |
12 | 11 | biantrurd 533 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))) |
13 | 3anan32 1097 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)) | |
14 | 12, 13 | bitr4di 288 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
15 | xrltnle 11277 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) | |
16 | 8, 14, 15 | 3bitr2d 306 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦 ≤ 𝑥)) |
17 | 16 | rabbi2dva 4216 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
18 | 4, 17 | eqtr3id 2786 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
19 | 18 | mpteq2ia 5250 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
20 | 19 | rneqi 5934 | . 2 ⊢ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
21 | 1, 20 | eqtri 2760 | 1 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {crab 3432 ∩ cin 3946 ⊆ wss 3947 class class class wbr 5147 ↦ cmpt 5230 ran crn 5676 (class class class)co 7405 +∞cpnf 11241 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 (,]cioc 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-ioc 13325 |
This theorem is referenced by: leordtval2 22707 leordtval 22708 |
Copyright terms: Public domain | W3C validator |