| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leordtvallem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for leordtval 23121. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
| Ref | Expression |
|---|---|
| leordtvallem1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.1 | . 2 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
| 2 | iocssxr 13323 | . . . . . 6 ⊢ (𝑥(,]+∞) ⊆ ℝ* | |
| 3 | sseqin2 4171 | . . . . . 6 ⊢ ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)) | |
| 4 | 2, 3 | mpbi 230 | . . . . 5 ⊢ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞) |
| 5 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
| 6 | pnfxr 11158 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 7 | elioc1 13279 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
| 9 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
| 10 | pnfge 13021 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ* → 𝑦 ≤ +∞) | |
| 11 | 9, 10 | jccir 521 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞)) |
| 12 | 11 | biantrurd 532 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))) |
| 13 | 3anan32 1096 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)) | |
| 14 | 12, 13 | bitr4di 289 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
| 15 | xrltnle 11171 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) | |
| 16 | 8, 14, 15 | 3bitr2d 307 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦 ≤ 𝑥)) |
| 17 | 16 | rabbi2dva 4174 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| 18 | 4, 17 | eqtr3id 2779 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| 19 | 18 | mpteq2ia 5184 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| 20 | 19 | rneqi 5874 | . 2 ⊢ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| 21 | 1, 20 | eqtri 2753 | 1 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 {crab 3393 ∩ cin 3899 ⊆ wss 3900 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 (class class class)co 7341 +∞cpnf 11135 ℝ*cxr 11137 < clt 11138 ≤ cle 11139 (,]cioc 13238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-ioc 13242 |
| This theorem is referenced by: leordtval2 23120 leordtval 23121 |
| Copyright terms: Public domain | W3C validator |