| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leordtvallem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for leordtval 23156. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
| Ref | Expression |
|---|---|
| leordtvallem1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.1 | . 2 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
| 2 | iocssxr 13453 | . . . . . 6 ⊢ (𝑥(,]+∞) ⊆ ℝ* | |
| 3 | sseqin2 4203 | . . . . . 6 ⊢ ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)) | |
| 4 | 2, 3 | mpbi 230 | . . . . 5 ⊢ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞) |
| 5 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
| 6 | pnfxr 11294 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 7 | elioc1 13409 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
| 9 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
| 10 | pnfge 13151 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ* → 𝑦 ≤ +∞) | |
| 11 | 9, 10 | jccir 521 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞)) |
| 12 | 11 | biantrurd 532 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))) |
| 13 | 3anan32 1096 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)) | |
| 14 | 12, 13 | bitr4di 289 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
| 15 | xrltnle 11307 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) | |
| 16 | 8, 14, 15 | 3bitr2d 307 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦 ≤ 𝑥)) |
| 17 | 16 | rabbi2dva 4206 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| 18 | 4, 17 | eqtr3id 2785 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| 19 | 18 | mpteq2ia 5221 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| 20 | 19 | rneqi 5922 | . 2 ⊢ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| 21 | 1, 20 | eqtri 2759 | 1 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3420 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 (class class class)co 7410 +∞cpnf 11271 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 (,]cioc 13368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-ioc 13372 |
| This theorem is referenced by: leordtval2 23155 leordtval 23156 |
| Copyright terms: Public domain | W3C validator |