MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem1 Structured version   Visualization version   GIF version

Theorem leordtvallem1 22342
Description: Lemma for leordtval 22345. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
Assertion
Ref Expression
leordtvallem1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem leordtvallem1
StepHypRef Expression
1 leordtval.1 . 2 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 iocssxr 13145 . . . . . 6 (𝑥(,]+∞) ⊆ ℝ*
3 sseqin2 4154 . . . . . 6 ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞))
42, 3mpbi 229 . . . . 5 (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)
5 simpl 482 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
6 pnfxr 11013 . . . . . . . 8 +∞ ∈ ℝ*
7 elioc1 13103 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
85, 6, 7sylancl 585 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
9 simpr 484 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
10 pnfge 12848 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
119, 10jccir 521 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ*𝑦 ≤ +∞))
1211biantrurd 532 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)))
13 3anan32 1095 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))
1412, 13bitr4di 288 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
15 xrltnle 11026 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
168, 14, 153bitr2d 306 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦𝑥))
1716rabbi2dva 4156 . . . . 5 (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
184, 17eqtr3id 2793 . . . 4 (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
1918mpteq2ia 5181 . . 3 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
2019rneqi 5843 . 2 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
211, 20eqtri 2767 1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  {crab 3069  cin 3890  wss 3891   class class class wbr 5078  cmpt 5161  ran crn 5589  (class class class)co 7268  +∞cpnf 10990  *cxr 10992   < clt 10993  cle 10994  (,]cioc 13062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-ioc 13066
This theorem is referenced by:  leordtval2  22344  leordtval  22345
  Copyright terms: Public domain W3C validator