MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem1 Structured version   Visualization version   GIF version

Theorem leordtvallem1 23097
Description: Lemma for leordtval 23100. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
Assertion
Ref Expression
leordtvallem1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem leordtvallem1
StepHypRef Expression
1 leordtval.1 . 2 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 iocssxr 13392 . . . . . 6 (𝑥(,]+∞) ⊆ ℝ*
3 sseqin2 4186 . . . . . 6 ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞))
42, 3mpbi 230 . . . . 5 (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)
5 simpl 482 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
6 pnfxr 11228 . . . . . . . 8 +∞ ∈ ℝ*
7 elioc1 13348 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
85, 6, 7sylancl 586 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
9 simpr 484 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
10 pnfge 13090 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
119, 10jccir 521 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ*𝑦 ≤ +∞))
1211biantrurd 532 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)))
13 3anan32 1096 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))
1412, 13bitr4di 289 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
15 xrltnle 11241 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
168, 14, 153bitr2d 307 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦𝑥))
1716rabbi2dva 4189 . . . . 5 (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
184, 17eqtr3id 2778 . . . 4 (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
1918mpteq2ia 5202 . . 3 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
2019rneqi 5901 . 2 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
211, 20eqtri 2752 1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  cin 3913  wss 3914   class class class wbr 5107  cmpt 5188  ran crn 5639  (class class class)co 7387  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  (,]cioc 13307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-ioc 13311
This theorem is referenced by:  leordtval2  23099  leordtval  23100
  Copyright terms: Public domain W3C validator