Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem1 Structured version   Visualization version   GIF version

Theorem leordtvallem1 21506
 Description: Lemma for leordtval 21509. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
Assertion
Ref Expression
leordtvallem1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem leordtvallem1
StepHypRef Expression
1 leordtval.1 . 2 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 iocssxr 12674 . . . . . 6 (𝑥(,]+∞) ⊆ ℝ*
3 sseqin2 4118 . . . . . 6 ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞))
42, 3mpbi 231 . . . . 5 (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)
5 simpl 483 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
6 pnfxr 10548 . . . . . . . 8 +∞ ∈ ℝ*
7 elioc1 12634 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
85, 6, 7sylancl 586 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
9 simpr 485 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
10 pnfge 12379 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
119, 10jccir 522 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ*𝑦 ≤ +∞))
1211biantrurd 533 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)))
13 3anan32 1090 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))
1412, 13syl6bbr 290 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
15 xrltnle 10561 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
168, 14, 153bitr2d 308 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦𝑥))
1716rabbi2dva 4120 . . . . 5 (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
184, 17syl5eqr 2847 . . . 4 (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
1918mpteq2ia 5058 . . 3 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
2019rneqi 5696 . 2 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
211, 20eqtri 2821 1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 207   ∧ wa 396   ∧ w3a 1080   = wceq 1525   ∈ wcel 2083  {crab 3111   ∩ cin 3864   ⊆ wss 3865   class class class wbr 4968   ↦ cmpt 5047  ran crn 5451  (class class class)co 7023  +∞cpnf 10525  ℝ*cxr 10527   < clt 10528   ≤ cle 10529  (,]cioc 12593 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-1st 7552  df-2nd 7553  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-ioc 12597 This theorem is referenced by:  leordtval2  21508  leordtval  21509
 Copyright terms: Public domain W3C validator