MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmat1dlem Structured version   Visualization version   GIF version

Theorem chpmat1dlem 22773
Description: Lemma for chpmat1d 22774. (Contributed by AV, 7-Aug-2019.)
Hypotheses
Ref Expression
chpmat1d.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpmat1d.p 𝑃 = (Poly1𝑅)
chpmat1d.a 𝐴 = (𝑁 Mat 𝑅)
chpmat1d.b 𝐵 = (Base‘𝐴)
chpmat1d.x 𝑋 = (var1𝑅)
chpmat1d.z = (-g𝑃)
chpmat1d.s 𝑆 = (algSc‘𝑃)
chpmat1dlem.g 𝐺 = (𝑁 Mat 𝑃)
chpmat1dlem.x 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpmat1dlem ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))

Proof of Theorem chpmat1dlem
StepHypRef Expression
1 chpmat1d.p . . . . 5 𝑃 = (Poly1𝑅)
21ply1ring 22183 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1133 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
4 snfi 9057 . . . . . . . . . . 11 {𝐼} ∈ Fin
5 eleq1 2822 . . . . . . . . . . 11 (𝑁 = {𝐼} → (𝑁 ∈ Fin ↔ {𝐼} ∈ Fin))
64, 5mpbiri 258 . . . . . . . . . 10 (𝑁 = {𝐼} → 𝑁 ∈ Fin)
76adantr 480 . . . . . . . . 9 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝑁 ∈ Fin)
82, 7anim12i 613 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉)) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
983adant3 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
109ancomd 461 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
11 chpmat1dlem.g . . . . . . 7 𝐺 = (𝑁 Mat 𝑃)
1211matlmod 22367 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ LMod)
1310, 12syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ LMod)
14 chpmat1d.x . . . . . . . 8 𝑋 = (var1𝑅)
15 eqid 2735 . . . . . . . 8 (Poly1𝑅) = (Poly1𝑅)
16 eqid 2735 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1714, 15, 16vr1cl 22153 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝑅)))
18173ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Poly1𝑅)))
1973ad2ant2 1134 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
20 fvex 6889 . . . . . . . . 9 (Poly1𝑅) ∈ V
211oveq2i 7416 . . . . . . . . . . 11 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
2211, 21eqtri 2758 . . . . . . . . . 10 𝐺 = (𝑁 Mat (Poly1𝑅))
2322matsca2 22358 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ (Poly1𝑅) ∈ V) → (Poly1𝑅) = (Scalar‘𝐺))
2419, 20, 23sylancl 586 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Poly1𝑅) = (Scalar‘𝐺))
2524eqcomd 2741 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Scalar‘𝐺) = (Poly1𝑅))
2625fveq2d 6880 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(Scalar‘𝐺)) = (Base‘(Poly1𝑅)))
2718, 26eleqtrrd 2837 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝐺)))
2811matring 22381 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ Ring)
2910, 28syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ Ring)
30 eqid 2735 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
31 eqid 2735 . . . . . . 7 (1r𝐺) = (1r𝐺)
3230, 31ringidcl 20225 . . . . . 6 (𝐺 ∈ Ring → (1r𝐺) ∈ (Base‘𝐺))
3329, 32syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (1r𝐺) ∈ (Base‘𝐺))
3413, 27, 333jca 1128 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)))
35 eqid 2735 . . . . 5 (Scalar‘𝐺) = (Scalar‘𝐺)
36 eqid 2735 . . . . 5 ( ·𝑠𝐺) = ( ·𝑠𝐺)
37 eqid 2735 . . . . 5 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
3830, 35, 36, 37lmodvscl 20835 . . . 4 ((𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
3934, 38syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
40 simp1 1136 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
41 simp3 1138 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
4219, 40, 413jca 1128 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵))
43 chpmat1dlem.x . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
44 chpmat1d.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
45 chpmat1d.b . . . . 5 𝐵 = (Base‘𝐴)
4643, 44, 45, 1, 11mat2pmatbas 22664 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
4742, 46syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
48 snidg 4636 . . . . . . 7 (𝐼𝑉𝐼 ∈ {𝐼})
4948adantl 481 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼 ∈ {𝐼})
50 eleq2 2823 . . . . . . 7 (𝑁 = {𝐼} → (𝐼𝑁𝐼 ∈ {𝐼}))
5150adantr 480 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼 ∈ {𝐼}))
5249, 51mpbird 257 . . . . 5 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼𝑁)
53 id 22 . . . . 5 (𝐼𝑁𝐼𝑁)
5452, 53jccir 521 . . . 4 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼𝑁))
55543ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁))
56 eqid 2735 . . . 4 (-g𝐺) = (-g𝐺)
57 chpmat1d.z . . . 4 = (-g𝑃)
5811, 30, 56, 57matsubgcell 22372 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺) ∧ (𝑇𝑀) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
593, 39, 47, 55, 58syl121anc 1377 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
60 eqid 2735 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
6114, 1, 60vr1cl 22153 . . . . . 6 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
62613ad2ant1 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
63 eqid 2735 . . . . . 6 (.r𝑃) = (.r𝑃)
6411, 30, 60, 36, 63matvscacell 22374 . . . . 5 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ (1r𝐺) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
653, 62, 33, 55, 64syl121anc 1377 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
66 eqid 2735 . . . . . . 7 (1r𝑃) = (1r𝑃)
67 eqid 2735 . . . . . . 7 (0g𝑃) = (0g𝑃)
68523ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑁)
6911, 66, 67, 19, 3, 68, 68, 31mat1ov 22386 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)))
70 eqidd 2736 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼 = 𝐼)
7170iftrued 4508 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)) = (1r𝑃))
7269, 71eqtrd 2770 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = (1r𝑃))
7372oveq2d 7421 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)) = (𝑋(.r𝑃)(1r𝑃)))
7460, 63, 66ringridm 20230 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
753, 62, 74syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
7665, 73, 753eqtrd 2774 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = 𝑋)
77 chpmat1d.s . . . . 5 𝑆 = (algSc‘𝑃)
7843, 44, 45, 1, 77mat2pmatvalel 22663 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
7942, 55, 78syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
8076, 79oveq12d 7423 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
8159, 80eqtrd 2770 1 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  ifcif 4500  {csn 4601  cfv 6531  (class class class)co 7405  Fincfn 8959  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  -gcsg 18918  1rcur 20141  Ringcrg 20193  LModclmod 20817  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112   Mat cmat 22345   matToPolyMat cmat2pmat 22642   CharPlyMat cchpmat 22764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-mamu 22329  df-mat 22346  df-mat2pmat 22645
This theorem is referenced by:  chpmat1d  22774
  Copyright terms: Public domain W3C validator