MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmat1dlem Structured version   Visualization version   GIF version

Theorem chpmat1dlem 22729
Description: Lemma for chpmat1d 22730. (Contributed by AV, 7-Aug-2019.)
Hypotheses
Ref Expression
chpmat1d.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpmat1d.p 𝑃 = (Poly1𝑅)
chpmat1d.a 𝐴 = (𝑁 Mat 𝑅)
chpmat1d.b 𝐵 = (Base‘𝐴)
chpmat1d.x 𝑋 = (var1𝑅)
chpmat1d.z = (-g𝑃)
chpmat1d.s 𝑆 = (algSc‘𝑃)
chpmat1dlem.g 𝐺 = (𝑁 Mat 𝑃)
chpmat1dlem.x 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpmat1dlem ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))

Proof of Theorem chpmat1dlem
StepHypRef Expression
1 chpmat1d.p . . . . 5 𝑃 = (Poly1𝑅)
21ply1ring 22139 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1133 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
4 snfi 9017 . . . . . . . . . . 11 {𝐼} ∈ Fin
5 eleq1 2817 . . . . . . . . . . 11 (𝑁 = {𝐼} → (𝑁 ∈ Fin ↔ {𝐼} ∈ Fin))
64, 5mpbiri 258 . . . . . . . . . 10 (𝑁 = {𝐼} → 𝑁 ∈ Fin)
76adantr 480 . . . . . . . . 9 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝑁 ∈ Fin)
82, 7anim12i 613 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉)) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
983adant3 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
109ancomd 461 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
11 chpmat1dlem.g . . . . . . 7 𝐺 = (𝑁 Mat 𝑃)
1211matlmod 22323 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ LMod)
1310, 12syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ LMod)
14 chpmat1d.x . . . . . . . 8 𝑋 = (var1𝑅)
15 eqid 2730 . . . . . . . 8 (Poly1𝑅) = (Poly1𝑅)
16 eqid 2730 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1714, 15, 16vr1cl 22109 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝑅)))
18173ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Poly1𝑅)))
1973ad2ant2 1134 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
20 fvex 6874 . . . . . . . . 9 (Poly1𝑅) ∈ V
211oveq2i 7401 . . . . . . . . . . 11 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
2211, 21eqtri 2753 . . . . . . . . . 10 𝐺 = (𝑁 Mat (Poly1𝑅))
2322matsca2 22314 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ (Poly1𝑅) ∈ V) → (Poly1𝑅) = (Scalar‘𝐺))
2419, 20, 23sylancl 586 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Poly1𝑅) = (Scalar‘𝐺))
2524eqcomd 2736 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Scalar‘𝐺) = (Poly1𝑅))
2625fveq2d 6865 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(Scalar‘𝐺)) = (Base‘(Poly1𝑅)))
2718, 26eleqtrrd 2832 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝐺)))
2811matring 22337 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ Ring)
2910, 28syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ Ring)
30 eqid 2730 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
31 eqid 2730 . . . . . . 7 (1r𝐺) = (1r𝐺)
3230, 31ringidcl 20181 . . . . . 6 (𝐺 ∈ Ring → (1r𝐺) ∈ (Base‘𝐺))
3329, 32syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (1r𝐺) ∈ (Base‘𝐺))
3413, 27, 333jca 1128 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)))
35 eqid 2730 . . . . 5 (Scalar‘𝐺) = (Scalar‘𝐺)
36 eqid 2730 . . . . 5 ( ·𝑠𝐺) = ( ·𝑠𝐺)
37 eqid 2730 . . . . 5 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
3830, 35, 36, 37lmodvscl 20791 . . . 4 ((𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
3934, 38syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
40 simp1 1136 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
41 simp3 1138 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
4219, 40, 413jca 1128 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵))
43 chpmat1dlem.x . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
44 chpmat1d.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
45 chpmat1d.b . . . . 5 𝐵 = (Base‘𝐴)
4643, 44, 45, 1, 11mat2pmatbas 22620 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
4742, 46syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
48 snidg 4627 . . . . . . 7 (𝐼𝑉𝐼 ∈ {𝐼})
4948adantl 481 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼 ∈ {𝐼})
50 eleq2 2818 . . . . . . 7 (𝑁 = {𝐼} → (𝐼𝑁𝐼 ∈ {𝐼}))
5150adantr 480 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼 ∈ {𝐼}))
5249, 51mpbird 257 . . . . 5 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼𝑁)
53 id 22 . . . . 5 (𝐼𝑁𝐼𝑁)
5452, 53jccir 521 . . . 4 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼𝑁))
55543ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁))
56 eqid 2730 . . . 4 (-g𝐺) = (-g𝐺)
57 chpmat1d.z . . . 4 = (-g𝑃)
5811, 30, 56, 57matsubgcell 22328 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺) ∧ (𝑇𝑀) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
593, 39, 47, 55, 58syl121anc 1377 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
60 eqid 2730 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
6114, 1, 60vr1cl 22109 . . . . . 6 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
62613ad2ant1 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
63 eqid 2730 . . . . . 6 (.r𝑃) = (.r𝑃)
6411, 30, 60, 36, 63matvscacell 22330 . . . . 5 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ (1r𝐺) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
653, 62, 33, 55, 64syl121anc 1377 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
66 eqid 2730 . . . . . . 7 (1r𝑃) = (1r𝑃)
67 eqid 2730 . . . . . . 7 (0g𝑃) = (0g𝑃)
68523ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑁)
6911, 66, 67, 19, 3, 68, 68, 31mat1ov 22342 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)))
70 eqidd 2731 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼 = 𝐼)
7170iftrued 4499 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)) = (1r𝑃))
7269, 71eqtrd 2765 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = (1r𝑃))
7372oveq2d 7406 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)) = (𝑋(.r𝑃)(1r𝑃)))
7460, 63, 66ringridm 20186 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
753, 62, 74syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
7665, 73, 753eqtrd 2769 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = 𝑋)
77 chpmat1d.s . . . . 5 𝑆 = (algSc‘𝑃)
7843, 44, 45, 1, 77mat2pmatvalel 22619 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
7942, 55, 78syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
8076, 79oveq12d 7408 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
8159, 80eqtrd 2765 1 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  ifcif 4491  {csn 4592  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  -gcsg 18874  1rcur 20097  Ringcrg 20149  LModclmod 20773  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068   Mat cmat 22301   matToPolyMat cmat2pmat 22598   CharPlyMat cchpmat 22720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-mamu 22285  df-mat 22302  df-mat2pmat 22601
This theorem is referenced by:  chpmat1d  22730
  Copyright terms: Public domain W3C validator