Proof of Theorem chpmat1dlem
| Step | Hyp | Ref
| Expression |
| 1 | | chpmat1d.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
| 2 | 1 | ply1ring 22249 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 3 | 2 | 3ad2ant1 1134 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 4 | | snfi 9083 |
. . . . . . . . . . 11
⊢ {𝐼} ∈ Fin |
| 5 | | eleq1 2829 |
. . . . . . . . . . 11
⊢ (𝑁 = {𝐼} → (𝑁 ∈ Fin ↔ {𝐼} ∈ Fin)) |
| 6 | 4, 5 | mpbiri 258 |
. . . . . . . . . 10
⊢ (𝑁 = {𝐼} → 𝑁 ∈ Fin) |
| 7 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 8 | 2, 7 | anim12i 613 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉)) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin)) |
| 9 | 8 | 3adant3 1133 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin)) |
| 10 | 9 | ancomd 461 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
| 11 | | chpmat1dlem.g |
. . . . . . 7
⊢ 𝐺 = (𝑁 Mat 𝑃) |
| 12 | 11 | matlmod 22435 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ LMod) |
| 13 | 10, 12 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ LMod) |
| 14 | | chpmat1d.x |
. . . . . . . 8
⊢ 𝑋 = (var1‘𝑅) |
| 15 | | eqid 2737 |
. . . . . . . 8
⊢
(Poly1‘𝑅) = (Poly1‘𝑅) |
| 16 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘(Poly1‘𝑅)) =
(Base‘(Poly1‘𝑅)) |
| 17 | 14, 15, 16 | vr1cl 22219 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑋 ∈
(Base‘(Poly1‘𝑅))) |
| 18 | 17 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈
(Base‘(Poly1‘𝑅))) |
| 19 | 7 | 3ad2ant2 1135 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 20 | | fvex 6919 |
. . . . . . . . 9
⊢
(Poly1‘𝑅) ∈ V |
| 21 | 1 | oveq2i 7442 |
. . . . . . . . . . 11
⊢ (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1‘𝑅)) |
| 22 | 11, 21 | eqtri 2765 |
. . . . . . . . . 10
⊢ 𝐺 = (𝑁 Mat (Poly1‘𝑅)) |
| 23 | 22 | matsca2 22426 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧
(Poly1‘𝑅)
∈ V) → (Poly1‘𝑅) = (Scalar‘𝐺)) |
| 24 | 19, 20, 23 | sylancl 586 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Poly1‘𝑅) = (Scalar‘𝐺)) |
| 25 | 24 | eqcomd 2743 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝐺) = (Poly1‘𝑅)) |
| 26 | 25 | fveq2d 6910 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝐺)) =
(Base‘(Poly1‘𝑅))) |
| 27 | 18, 26 | eleqtrrd 2844 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝐺))) |
| 28 | 11 | matring 22449 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ Ring) |
| 29 | 10, 28 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ Ring) |
| 30 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 31 | | eqid 2737 |
. . . . . . 7
⊢
(1r‘𝐺) = (1r‘𝐺) |
| 32 | 30, 31 | ringidcl 20262 |
. . . . . 6
⊢ (𝐺 ∈ Ring →
(1r‘𝐺)
∈ (Base‘𝐺)) |
| 33 | 29, 32 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (1r‘𝐺) ∈ (Base‘𝐺)) |
| 34 | 13, 27, 33 | 3jca 1129 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧
(1r‘𝐺)
∈ (Base‘𝐺))) |
| 35 | | eqid 2737 |
. . . . 5
⊢
(Scalar‘𝐺) =
(Scalar‘𝐺) |
| 36 | | eqid 2737 |
. . . . 5
⊢ (
·𝑠 ‘𝐺) = ( ·𝑠
‘𝐺) |
| 37 | | eqid 2737 |
. . . . 5
⊢
(Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺)) |
| 38 | 30, 35, 36, 37 | lmodvscl 20876 |
. . . 4
⊢ ((𝐺 ∈ LMod ∧ 𝑋 ∈
(Base‘(Scalar‘𝐺)) ∧ (1r‘𝐺) ∈ (Base‘𝐺)) → (𝑋( ·𝑠
‘𝐺)(1r‘𝐺)) ∈ (Base‘𝐺)) |
| 39 | 34, 38 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑋( ·𝑠
‘𝐺)(1r‘𝐺)) ∈ (Base‘𝐺)) |
| 40 | | simp1 1137 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 41 | | simp3 1139 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
| 42 | 19, 40, 41 | 3jca 1129 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵)) |
| 43 | | chpmat1dlem.x |
. . . . 5
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 44 | | chpmat1d.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 45 | | chpmat1d.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
| 46 | 43, 44, 45, 1, 11 | mat2pmatbas 22732 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝐺)) |
| 47 | 42, 46 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝐺)) |
| 48 | | snidg 4660 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) |
| 49 | 48 | adantl 481 |
. . . . . 6
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ {𝐼}) |
| 50 | | eleq2 2830 |
. . . . . . 7
⊢ (𝑁 = {𝐼} → (𝐼 ∈ 𝑁 ↔ 𝐼 ∈ {𝐼})) |
| 51 | 50 | adantr 480 |
. . . . . 6
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (𝐼 ∈ 𝑁 ↔ 𝐼 ∈ {𝐼})) |
| 52 | 49, 51 | mpbird 257 |
. . . . 5
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑁) |
| 53 | | id 22 |
. . . . 5
⊢ (𝐼 ∈ 𝑁 → 𝐼 ∈ 𝑁) |
| 54 | 52, 53 | jccir 521 |
. . . 4
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) |
| 55 | 54 | 3ad2ant2 1135 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) |
| 56 | | eqid 2737 |
. . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 57 | | chpmat1d.z |
. . . 4
⊢ − =
(-g‘𝑃) |
| 58 | 11, 30, 56, 57 | matsubgcell 22440 |
. . 3
⊢ ((𝑃 ∈ Ring ∧ ((𝑋(
·𝑠 ‘𝐺)(1r‘𝐺)) ∈ (Base‘𝐺) ∧ (𝑇‘𝑀) ∈ (Base‘𝐺)) ∧ (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) → (𝐼((𝑋( ·𝑠
‘𝐺)(1r‘𝐺))(-g‘𝐺)(𝑇‘𝑀))𝐼) = ((𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) − (𝐼(𝑇‘𝑀)𝐼))) |
| 59 | 3, 39, 47, 55, 58 | syl121anc 1377 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼((𝑋( ·𝑠
‘𝐺)(1r‘𝐺))(-g‘𝐺)(𝑇‘𝑀))𝐼) = ((𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) − (𝐼(𝑇‘𝑀)𝐼))) |
| 60 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 61 | 14, 1, 60 | vr1cl 22219 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
| 62 | 61 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
| 63 | | eqid 2737 |
. . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 64 | 11, 30, 60, 36, 63 | matvscacell 22442 |
. . . . 5
⊢ ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧
(1r‘𝐺)
∈ (Base‘𝐺))
∧ (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) → (𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) = (𝑋(.r‘𝑃)(𝐼(1r‘𝐺)𝐼))) |
| 65 | 3, 62, 33, 55, 64 | syl121anc 1377 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) = (𝑋(.r‘𝑃)(𝐼(1r‘𝐺)𝐼))) |
| 66 | | eqid 2737 |
. . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 67 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 68 | 52 | 3ad2ant2 1135 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ 𝑁) |
| 69 | 11, 66, 67, 19, 3, 68, 68, 31 | mat1ov 22454 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(1r‘𝐺)𝐼) = if(𝐼 = 𝐼, (1r‘𝑃), (0g‘𝑃))) |
| 70 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐼 = 𝐼) |
| 71 | 70 | iftrued 4533 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → if(𝐼 = 𝐼, (1r‘𝑃), (0g‘𝑃)) = (1r‘𝑃)) |
| 72 | 69, 71 | eqtrd 2777 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(1r‘𝐺)𝐼) = (1r‘𝑃)) |
| 73 | 72 | oveq2d 7447 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑋(.r‘𝑃)(𝐼(1r‘𝐺)𝐼)) = (𝑋(.r‘𝑃)(1r‘𝑃))) |
| 74 | 60, 63, 66 | ringridm 20267 |
. . . . 5
⊢ ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r‘𝑃)(1r‘𝑃)) = 𝑋) |
| 75 | 3, 62, 74 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑋(.r‘𝑃)(1r‘𝑃)) = 𝑋) |
| 76 | 65, 73, 75 | 3eqtrd 2781 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) = 𝑋) |
| 77 | | chpmat1d.s |
. . . . 5
⊢ 𝑆 = (algSc‘𝑃) |
| 78 | 43, 44, 45, 1, 77 | mat2pmatvalel 22731 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) → (𝐼(𝑇‘𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼))) |
| 79 | 42, 55, 78 | syl2anc 584 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(𝑇‘𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼))) |
| 80 | 76, 79 | oveq12d 7449 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) − (𝐼(𝑇‘𝑀)𝐼)) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) |
| 81 | 59, 80 | eqtrd 2777 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼((𝑋( ·𝑠
‘𝐺)(1r‘𝐺))(-g‘𝐺)(𝑇‘𝑀))𝐼) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) |