MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmat1dlem Structured version   Visualization version   GIF version

Theorem chpmat1dlem 21892
Description: Lemma for chpmat1d 21893. (Contributed by AV, 7-Aug-2019.)
Hypotheses
Ref Expression
chpmat1d.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpmat1d.p 𝑃 = (Poly1𝑅)
chpmat1d.a 𝐴 = (𝑁 Mat 𝑅)
chpmat1d.b 𝐵 = (Base‘𝐴)
chpmat1d.x 𝑋 = (var1𝑅)
chpmat1d.z = (-g𝑃)
chpmat1d.s 𝑆 = (algSc‘𝑃)
chpmat1dlem.g 𝐺 = (𝑁 Mat 𝑃)
chpmat1dlem.x 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpmat1dlem ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))

Proof of Theorem chpmat1dlem
StepHypRef Expression
1 chpmat1d.p . . . . 5 𝑃 = (Poly1𝑅)
21ply1ring 21329 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1131 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
4 snfi 8788 . . . . . . . . . . 11 {𝐼} ∈ Fin
5 eleq1 2826 . . . . . . . . . . 11 (𝑁 = {𝐼} → (𝑁 ∈ Fin ↔ {𝐼} ∈ Fin))
64, 5mpbiri 257 . . . . . . . . . 10 (𝑁 = {𝐼} → 𝑁 ∈ Fin)
76adantr 480 . . . . . . . . 9 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝑁 ∈ Fin)
82, 7anim12i 612 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉)) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
983adant3 1130 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
109ancomd 461 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
11 chpmat1dlem.g . . . . . . 7 𝐺 = (𝑁 Mat 𝑃)
1211matlmod 21486 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ LMod)
1310, 12syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ LMod)
14 chpmat1d.x . . . . . . . 8 𝑋 = (var1𝑅)
15 eqid 2738 . . . . . . . 8 (Poly1𝑅) = (Poly1𝑅)
16 eqid 2738 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1714, 15, 16vr1cl 21298 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝑅)))
18173ad2ant1 1131 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Poly1𝑅)))
1973ad2ant2 1132 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
20 fvex 6769 . . . . . . . . 9 (Poly1𝑅) ∈ V
211oveq2i 7266 . . . . . . . . . . 11 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
2211, 21eqtri 2766 . . . . . . . . . 10 𝐺 = (𝑁 Mat (Poly1𝑅))
2322matsca2 21477 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ (Poly1𝑅) ∈ V) → (Poly1𝑅) = (Scalar‘𝐺))
2419, 20, 23sylancl 585 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Poly1𝑅) = (Scalar‘𝐺))
2524eqcomd 2744 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Scalar‘𝐺) = (Poly1𝑅))
2625fveq2d 6760 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(Scalar‘𝐺)) = (Base‘(Poly1𝑅)))
2718, 26eleqtrrd 2842 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝐺)))
2811matring 21500 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ Ring)
2910, 28syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ Ring)
30 eqid 2738 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
31 eqid 2738 . . . . . . 7 (1r𝐺) = (1r𝐺)
3230, 31ringidcl 19722 . . . . . 6 (𝐺 ∈ Ring → (1r𝐺) ∈ (Base‘𝐺))
3329, 32syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (1r𝐺) ∈ (Base‘𝐺))
3413, 27, 333jca 1126 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)))
35 eqid 2738 . . . . 5 (Scalar‘𝐺) = (Scalar‘𝐺)
36 eqid 2738 . . . . 5 ( ·𝑠𝐺) = ( ·𝑠𝐺)
37 eqid 2738 . . . . 5 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
3830, 35, 36, 37lmodvscl 20055 . . . 4 ((𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
3934, 38syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
40 simp1 1134 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
41 simp3 1136 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
4219, 40, 413jca 1126 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵))
43 chpmat1dlem.x . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
44 chpmat1d.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
45 chpmat1d.b . . . . 5 𝐵 = (Base‘𝐴)
4643, 44, 45, 1, 11mat2pmatbas 21783 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
4742, 46syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
48 snidg 4592 . . . . . . 7 (𝐼𝑉𝐼 ∈ {𝐼})
4948adantl 481 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼 ∈ {𝐼})
50 eleq2 2827 . . . . . . 7 (𝑁 = {𝐼} → (𝐼𝑁𝐼 ∈ {𝐼}))
5150adantr 480 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼 ∈ {𝐼}))
5249, 51mpbird 256 . . . . 5 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼𝑁)
53 id 22 . . . . 5 (𝐼𝑁𝐼𝑁)
5452, 53jccir 521 . . . 4 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼𝑁))
55543ad2ant2 1132 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁))
56 eqid 2738 . . . 4 (-g𝐺) = (-g𝐺)
57 chpmat1d.z . . . 4 = (-g𝑃)
5811, 30, 56, 57matsubgcell 21491 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺) ∧ (𝑇𝑀) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
593, 39, 47, 55, 58syl121anc 1373 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
60 eqid 2738 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
6114, 1, 60vr1cl 21298 . . . . . 6 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
62613ad2ant1 1131 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
63 eqid 2738 . . . . . 6 (.r𝑃) = (.r𝑃)
6411, 30, 60, 36, 63matvscacell 21493 . . . . 5 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ (1r𝐺) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
653, 62, 33, 55, 64syl121anc 1373 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
66 eqid 2738 . . . . . . 7 (1r𝑃) = (1r𝑃)
67 eqid 2738 . . . . . . 7 (0g𝑃) = (0g𝑃)
68523ad2ant2 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑁)
6911, 66, 67, 19, 3, 68, 68, 31mat1ov 21505 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)))
70 eqidd 2739 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼 = 𝐼)
7170iftrued 4464 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)) = (1r𝑃))
7269, 71eqtrd 2778 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = (1r𝑃))
7372oveq2d 7271 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)) = (𝑋(.r𝑃)(1r𝑃)))
7460, 63, 66ringridm 19726 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
753, 62, 74syl2anc 583 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
7665, 73, 753eqtrd 2782 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = 𝑋)
77 chpmat1d.s . . . . 5 𝑆 = (algSc‘𝑃)
7843, 44, 45, 1, 77mat2pmatvalel 21782 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
7942, 55, 78syl2anc 583 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
8076, 79oveq12d 7273 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
8159, 80eqtrd 2778 1 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  ifcif 4456  {csn 4558  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  -gcsg 18494  1rcur 19652  Ringcrg 19698  LModclmod 20038  algSccascl 20969  var1cv1 21257  Poly1cpl1 21258   Mat cmat 21464   matToPolyMat cmat2pmat 21761   CharPlyMat cchpmat 21883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-mamu 21443  df-mat 21465  df-mat2pmat 21764
This theorem is referenced by:  chpmat1d  21893
  Copyright terms: Public domain W3C validator