Step | Hyp | Ref
| Expression |
1 | | chpmat1d.p |
. . . . 5
β’ π = (Poly1βπ
) |
2 | 1 | ply1ring 21761 |
. . . 4
β’ (π
β Ring β π β Ring) |
3 | 2 | 3ad2ant1 1133 |
. . 3
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β Ring) |
4 | | snfi 9040 |
. . . . . . . . . . 11
β’ {πΌ} β Fin |
5 | | eleq1 2821 |
. . . . . . . . . . 11
β’ (π = {πΌ} β (π β Fin β {πΌ} β Fin)) |
6 | 4, 5 | mpbiri 257 |
. . . . . . . . . 10
β’ (π = {πΌ} β π β Fin) |
7 | 6 | adantr 481 |
. . . . . . . . 9
β’ ((π = {πΌ} β§ πΌ β π) β π β Fin) |
8 | 2, 7 | anim12i 613 |
. . . . . . . 8
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π)) β (π β Ring β§ π β Fin)) |
9 | 8 | 3adant3 1132 |
. . . . . . 7
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π β Ring β§ π β Fin)) |
10 | 9 | ancomd 462 |
. . . . . 6
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π β Fin β§ π β Ring)) |
11 | | chpmat1dlem.g |
. . . . . . 7
β’ πΊ = (π Mat π) |
12 | 11 | matlmod 21922 |
. . . . . 6
β’ ((π β Fin β§ π β Ring) β πΊ β LMod) |
13 | 10, 12 | syl 17 |
. . . . 5
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β πΊ β LMod) |
14 | | chpmat1d.x |
. . . . . . . 8
β’ π = (var1βπ
) |
15 | | eqid 2732 |
. . . . . . . 8
β’
(Poly1βπ
) = (Poly1βπ
) |
16 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβ(Poly1βπ
)) =
(Baseβ(Poly1βπ
)) |
17 | 14, 15, 16 | vr1cl 21732 |
. . . . . . 7
β’ (π
β Ring β π β
(Baseβ(Poly1βπ
))) |
18 | 17 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β
(Baseβ(Poly1βπ
))) |
19 | 7 | 3ad2ant2 1134 |
. . . . . . . . 9
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β Fin) |
20 | | fvex 6901 |
. . . . . . . . 9
β’
(Poly1βπ
) β V |
21 | 1 | oveq2i 7416 |
. . . . . . . . . . 11
β’ (π Mat π) = (π Mat (Poly1βπ
)) |
22 | 11, 21 | eqtri 2760 |
. . . . . . . . . 10
β’ πΊ = (π Mat (Poly1βπ
)) |
23 | 22 | matsca2 21913 |
. . . . . . . . 9
β’ ((π β Fin β§
(Poly1βπ
)
β V) β (Poly1βπ
) = (ScalarβπΊ)) |
24 | 19, 20, 23 | sylancl 586 |
. . . . . . . 8
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (Poly1βπ
) = (ScalarβπΊ)) |
25 | 24 | eqcomd 2738 |
. . . . . . 7
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (ScalarβπΊ) = (Poly1βπ
)) |
26 | 25 | fveq2d 6892 |
. . . . . 6
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (Baseβ(ScalarβπΊ)) =
(Baseβ(Poly1βπ
))) |
27 | 18, 26 | eleqtrrd 2836 |
. . . . 5
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β (Baseβ(ScalarβπΊ))) |
28 | 11 | matring 21936 |
. . . . . . 7
β’ ((π β Fin β§ π β Ring) β πΊ β Ring) |
29 | 10, 28 | syl 17 |
. . . . . 6
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β πΊ β Ring) |
30 | | eqid 2732 |
. . . . . . 7
β’
(BaseβπΊ) =
(BaseβπΊ) |
31 | | eqid 2732 |
. . . . . . 7
β’
(1rβπΊ) = (1rβπΊ) |
32 | 30, 31 | ringidcl 20076 |
. . . . . 6
β’ (πΊ β Ring β
(1rβπΊ)
β (BaseβπΊ)) |
33 | 29, 32 | syl 17 |
. . . . 5
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (1rβπΊ) β (BaseβπΊ)) |
34 | 13, 27, 33 | 3jca 1128 |
. . . 4
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΊ β LMod β§ π β (Baseβ(ScalarβπΊ)) β§
(1rβπΊ)
β (BaseβπΊ))) |
35 | | eqid 2732 |
. . . . 5
β’
(ScalarβπΊ) =
(ScalarβπΊ) |
36 | | eqid 2732 |
. . . . 5
β’ (
Β·π βπΊ) = ( Β·π
βπΊ) |
37 | | eqid 2732 |
. . . . 5
β’
(Baseβ(ScalarβπΊ)) = (Baseβ(ScalarβπΊ)) |
38 | 30, 35, 36, 37 | lmodvscl 20481 |
. . . 4
β’ ((πΊ β LMod β§ π β
(Baseβ(ScalarβπΊ)) β§ (1rβπΊ) β (BaseβπΊ)) β (π( Β·π
βπΊ)(1rβπΊ)) β (BaseβπΊ)) |
39 | 34, 38 | syl 17 |
. . 3
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π( Β·π
βπΊ)(1rβπΊ)) β (BaseβπΊ)) |
40 | | simp1 1136 |
. . . . 5
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π
β Ring) |
41 | | simp3 1138 |
. . . . 5
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β π΅) |
42 | 19, 40, 41 | 3jca 1128 |
. . . 4
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π β Fin β§ π
β Ring β§ π β π΅)) |
43 | | chpmat1dlem.x |
. . . . 5
β’ π = (π matToPolyMat π
) |
44 | | chpmat1d.a |
. . . . 5
β’ π΄ = (π Mat π
) |
45 | | chpmat1d.b |
. . . . 5
β’ π΅ = (Baseβπ΄) |
46 | 43, 44, 45, 1, 11 | mat2pmatbas 22219 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (πβπ) β (BaseβπΊ)) |
47 | 42, 46 | syl 17 |
. . 3
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πβπ) β (BaseβπΊ)) |
48 | | snidg 4661 |
. . . . . . 7
β’ (πΌ β π β πΌ β {πΌ}) |
49 | 48 | adantl 482 |
. . . . . 6
β’ ((π = {πΌ} β§ πΌ β π) β πΌ β {πΌ}) |
50 | | eleq2 2822 |
. . . . . . 7
β’ (π = {πΌ} β (πΌ β π β πΌ β {πΌ})) |
51 | 50 | adantr 481 |
. . . . . 6
β’ ((π = {πΌ} β§ πΌ β π) β (πΌ β π β πΌ β {πΌ})) |
52 | 49, 51 | mpbird 256 |
. . . . 5
β’ ((π = {πΌ} β§ πΌ β π) β πΌ β π) |
53 | | id 22 |
. . . . 5
β’ (πΌ β π β πΌ β π) |
54 | 52, 53 | jccir 522 |
. . . 4
β’ ((π = {πΌ} β§ πΌ β π) β (πΌ β π β§ πΌ β π)) |
55 | 54 | 3ad2ant2 1134 |
. . 3
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ β π β§ πΌ β π)) |
56 | | eqid 2732 |
. . . 4
β’
(-gβπΊ) = (-gβπΊ) |
57 | | chpmat1d.z |
. . . 4
β’ β =
(-gβπ) |
58 | 11, 30, 56, 57 | matsubgcell 21927 |
. . 3
β’ ((π β Ring β§ ((π(
Β·π βπΊ)(1rβπΊ)) β (BaseβπΊ) β§ (πβπ) β (BaseβπΊ)) β§ (πΌ β π β§ πΌ β π)) β (πΌ((π( Β·π
βπΊ)(1rβπΊ))(-gβπΊ)(πβπ))πΌ) = ((πΌ(π( Β·π
βπΊ)(1rβπΊ))πΌ) β (πΌ(πβπ)πΌ))) |
59 | 3, 39, 47, 55, 58 | syl121anc 1375 |
. 2
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ((π( Β·π
βπΊ)(1rβπΊ))(-gβπΊ)(πβπ))πΌ) = ((πΌ(π( Β·π
βπΊ)(1rβπΊ))πΌ) β (πΌ(πβπ)πΌ))) |
60 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
61 | 14, 1, 60 | vr1cl 21732 |
. . . . . 6
β’ (π
β Ring β π β (Baseβπ)) |
62 | 61 | 3ad2ant1 1133 |
. . . . 5
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β (Baseβπ)) |
63 | | eqid 2732 |
. . . . . 6
β’
(.rβπ) = (.rβπ) |
64 | 11, 30, 60, 36, 63 | matvscacell 21929 |
. . . . 5
β’ ((π β Ring β§ (π β (Baseβπ) β§
(1rβπΊ)
β (BaseβπΊ))
β§ (πΌ β π β§ πΌ β π)) β (πΌ(π( Β·π
βπΊ)(1rβπΊ))πΌ) = (π(.rβπ)(πΌ(1rβπΊ)πΌ))) |
65 | 3, 62, 33, 55, 64 | syl121anc 1375 |
. . . 4
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ(π( Β·π
βπΊ)(1rβπΊ))πΌ) = (π(.rβπ)(πΌ(1rβπΊ)πΌ))) |
66 | | eqid 2732 |
. . . . . . 7
β’
(1rβπ) = (1rβπ) |
67 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
68 | 52 | 3ad2ant2 1134 |
. . . . . . 7
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β πΌ β π) |
69 | 11, 66, 67, 19, 3, 68, 68, 31 | mat1ov 21941 |
. . . . . 6
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ(1rβπΊ)πΌ) = if(πΌ = πΌ, (1rβπ), (0gβπ))) |
70 | | eqidd 2733 |
. . . . . . 7
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β πΌ = πΌ) |
71 | 70 | iftrued 4535 |
. . . . . 6
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β if(πΌ = πΌ, (1rβπ), (0gβπ)) = (1rβπ)) |
72 | 69, 71 | eqtrd 2772 |
. . . . 5
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ(1rβπΊ)πΌ) = (1rβπ)) |
73 | 72 | oveq2d 7421 |
. . . 4
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π(.rβπ)(πΌ(1rβπΊ)πΌ)) = (π(.rβπ)(1rβπ))) |
74 | 60, 63, 66 | ringridm 20080 |
. . . . 5
β’ ((π β Ring β§ π β (Baseβπ)) β (π(.rβπ)(1rβπ)) = π) |
75 | 3, 62, 74 | syl2anc 584 |
. . . 4
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π(.rβπ)(1rβπ)) = π) |
76 | 65, 73, 75 | 3eqtrd 2776 |
. . 3
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ(π( Β·π
βπΊ)(1rβπΊ))πΌ) = π) |
77 | | chpmat1d.s |
. . . . 5
β’ π = (algScβπ) |
78 | 43, 44, 45, 1, 77 | mat2pmatvalel 22218 |
. . . 4
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ (πΌ β π β§ πΌ β π)) β (πΌ(πβπ)πΌ) = (πβ(πΌππΌ))) |
79 | 42, 55, 78 | syl2anc 584 |
. . 3
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ(πβπ)πΌ) = (πβ(πΌππΌ))) |
80 | 76, 79 | oveq12d 7423 |
. 2
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β ((πΌ(π( Β·π
βπΊ)(1rβπΊ))πΌ) β (πΌ(πβπ)πΌ)) = (π β (πβ(πΌππΌ)))) |
81 | 59, 80 | eqtrd 2772 |
1
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ((π( Β·π
βπΊ)(1rβπΊ))(-gβπΊ)(πβπ))πΌ) = (π β (πβ(πΌππΌ)))) |