MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmat1dlem Structured version   Visualization version   GIF version

Theorem chpmat1dlem 22319
Description: Lemma for chpmat1d 22320. (Contributed by AV, 7-Aug-2019.)
Hypotheses
Ref Expression
chpmat1d.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpmat1d.p 𝑃 = (Poly1𝑅)
chpmat1d.a 𝐴 = (𝑁 Mat 𝑅)
chpmat1d.b 𝐵 = (Base‘𝐴)
chpmat1d.x 𝑋 = (var1𝑅)
chpmat1d.z = (-g𝑃)
chpmat1d.s 𝑆 = (algSc‘𝑃)
chpmat1dlem.g 𝐺 = (𝑁 Mat 𝑃)
chpmat1dlem.x 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpmat1dlem ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))

Proof of Theorem chpmat1dlem
StepHypRef Expression
1 chpmat1d.p . . . . 5 𝑃 = (Poly1𝑅)
21ply1ring 21752 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1134 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
4 snfi 9040 . . . . . . . . . . 11 {𝐼} ∈ Fin
5 eleq1 2822 . . . . . . . . . . 11 (𝑁 = {𝐼} → (𝑁 ∈ Fin ↔ {𝐼} ∈ Fin))
64, 5mpbiri 258 . . . . . . . . . 10 (𝑁 = {𝐼} → 𝑁 ∈ Fin)
76adantr 482 . . . . . . . . 9 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝑁 ∈ Fin)
82, 7anim12i 614 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉)) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
983adant3 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
109ancomd 463 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
11 chpmat1dlem.g . . . . . . 7 𝐺 = (𝑁 Mat 𝑃)
1211matlmod 21913 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ LMod)
1310, 12syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ LMod)
14 chpmat1d.x . . . . . . . 8 𝑋 = (var1𝑅)
15 eqid 2733 . . . . . . . 8 (Poly1𝑅) = (Poly1𝑅)
16 eqid 2733 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1714, 15, 16vr1cl 21723 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝑅)))
18173ad2ant1 1134 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Poly1𝑅)))
1973ad2ant2 1135 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
20 fvex 6901 . . . . . . . . 9 (Poly1𝑅) ∈ V
211oveq2i 7415 . . . . . . . . . . 11 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
2211, 21eqtri 2761 . . . . . . . . . 10 𝐺 = (𝑁 Mat (Poly1𝑅))
2322matsca2 21904 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ (Poly1𝑅) ∈ V) → (Poly1𝑅) = (Scalar‘𝐺))
2419, 20, 23sylancl 587 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Poly1𝑅) = (Scalar‘𝐺))
2524eqcomd 2739 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Scalar‘𝐺) = (Poly1𝑅))
2625fveq2d 6892 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(Scalar‘𝐺)) = (Base‘(Poly1𝑅)))
2718, 26eleqtrrd 2837 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝐺)))
2811matring 21927 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ Ring)
2910, 28syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ Ring)
30 eqid 2733 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
31 eqid 2733 . . . . . . 7 (1r𝐺) = (1r𝐺)
3230, 31ringidcl 20073 . . . . . 6 (𝐺 ∈ Ring → (1r𝐺) ∈ (Base‘𝐺))
3329, 32syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (1r𝐺) ∈ (Base‘𝐺))
3413, 27, 333jca 1129 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)))
35 eqid 2733 . . . . 5 (Scalar‘𝐺) = (Scalar‘𝐺)
36 eqid 2733 . . . . 5 ( ·𝑠𝐺) = ( ·𝑠𝐺)
37 eqid 2733 . . . . 5 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
3830, 35, 36, 37lmodvscl 20477 . . . 4 ((𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
3934, 38syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
40 simp1 1137 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
41 simp3 1139 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
4219, 40, 413jca 1129 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵))
43 chpmat1dlem.x . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
44 chpmat1d.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
45 chpmat1d.b . . . . 5 𝐵 = (Base‘𝐴)
4643, 44, 45, 1, 11mat2pmatbas 22210 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
4742, 46syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
48 snidg 4661 . . . . . . 7 (𝐼𝑉𝐼 ∈ {𝐼})
4948adantl 483 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼 ∈ {𝐼})
50 eleq2 2823 . . . . . . 7 (𝑁 = {𝐼} → (𝐼𝑁𝐼 ∈ {𝐼}))
5150adantr 482 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼 ∈ {𝐼}))
5249, 51mpbird 257 . . . . 5 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼𝑁)
53 id 22 . . . . 5 (𝐼𝑁𝐼𝑁)
5452, 53jccir 523 . . . 4 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼𝑁))
55543ad2ant2 1135 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁))
56 eqid 2733 . . . 4 (-g𝐺) = (-g𝐺)
57 chpmat1d.z . . . 4 = (-g𝑃)
5811, 30, 56, 57matsubgcell 21918 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺) ∧ (𝑇𝑀) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
593, 39, 47, 55, 58syl121anc 1376 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
60 eqid 2733 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
6114, 1, 60vr1cl 21723 . . . . . 6 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
62613ad2ant1 1134 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
63 eqid 2733 . . . . . 6 (.r𝑃) = (.r𝑃)
6411, 30, 60, 36, 63matvscacell 21920 . . . . 5 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ (1r𝐺) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
653, 62, 33, 55, 64syl121anc 1376 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
66 eqid 2733 . . . . . . 7 (1r𝑃) = (1r𝑃)
67 eqid 2733 . . . . . . 7 (0g𝑃) = (0g𝑃)
68523ad2ant2 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑁)
6911, 66, 67, 19, 3, 68, 68, 31mat1ov 21932 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)))
70 eqidd 2734 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼 = 𝐼)
7170iftrued 4535 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)) = (1r𝑃))
7269, 71eqtrd 2773 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = (1r𝑃))
7372oveq2d 7420 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)) = (𝑋(.r𝑃)(1r𝑃)))
7460, 63, 66ringridm 20077 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
753, 62, 74syl2anc 585 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
7665, 73, 753eqtrd 2777 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = 𝑋)
77 chpmat1d.s . . . . 5 𝑆 = (algSc‘𝑃)
7843, 44, 45, 1, 77mat2pmatvalel 22209 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
7942, 55, 78syl2anc 585 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
8076, 79oveq12d 7422 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
8159, 80eqtrd 2773 1 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475  ifcif 4527  {csn 4627  cfv 6540  (class class class)co 7404  Fincfn 8935  Basecbs 17140  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381  -gcsg 18817  1rcur 19996  Ringcrg 20047  LModclmod 20459  algSccascl 21391  var1cv1 21682  Poly1cpl1 21683   Mat cmat 21889   matToPolyMat cmat2pmat 22188   CharPlyMat cchpmat 22310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-ofr 7666  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-subrg 20349  df-lmod 20461  df-lss 20531  df-sra 20773  df-rgmod 20774  df-dsmm 21271  df-frlm 21286  df-ascl 21394  df-psr 21444  df-mvr 21445  df-mpl 21446  df-opsr 21448  df-psr1 21686  df-vr1 21687  df-ply1 21688  df-mamu 21868  df-mat 21890  df-mat2pmat 22191
This theorem is referenced by:  chpmat1d  22320
  Copyright terms: Public domain W3C validator