Proof of Theorem chpmat1dlem
Step | Hyp | Ref
| Expression |
1 | | chpmat1d.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
2 | 1 | ply1ring 21419 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
3 | 2 | 3ad2ant1 1132 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
4 | | snfi 8834 |
. . . . . . . . . . 11
⊢ {𝐼} ∈ Fin |
5 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑁 = {𝐼} → (𝑁 ∈ Fin ↔ {𝐼} ∈ Fin)) |
6 | 4, 5 | mpbiri 257 |
. . . . . . . . . 10
⊢ (𝑁 = {𝐼} → 𝑁 ∈ Fin) |
7 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → 𝑁 ∈ Fin) |
8 | 2, 7 | anim12i 613 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉)) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin)) |
9 | 8 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin)) |
10 | 9 | ancomd 462 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
11 | | chpmat1dlem.g |
. . . . . . 7
⊢ 𝐺 = (𝑁 Mat 𝑃) |
12 | 11 | matlmod 21578 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ LMod) |
13 | 10, 12 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ LMod) |
14 | | chpmat1d.x |
. . . . . . . 8
⊢ 𝑋 = (var1‘𝑅) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(Poly1‘𝑅) = (Poly1‘𝑅) |
16 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(Poly1‘𝑅)) =
(Base‘(Poly1‘𝑅)) |
17 | 14, 15, 16 | vr1cl 21388 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑋 ∈
(Base‘(Poly1‘𝑅))) |
18 | 17 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈
(Base‘(Poly1‘𝑅))) |
19 | 7 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
20 | | fvex 6787 |
. . . . . . . . 9
⊢
(Poly1‘𝑅) ∈ V |
21 | 1 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1‘𝑅)) |
22 | 11, 21 | eqtri 2766 |
. . . . . . . . . 10
⊢ 𝐺 = (𝑁 Mat (Poly1‘𝑅)) |
23 | 22 | matsca2 21569 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧
(Poly1‘𝑅)
∈ V) → (Poly1‘𝑅) = (Scalar‘𝐺)) |
24 | 19, 20, 23 | sylancl 586 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Poly1‘𝑅) = (Scalar‘𝐺)) |
25 | 24 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝐺) = (Poly1‘𝑅)) |
26 | 25 | fveq2d 6778 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝐺)) =
(Base‘(Poly1‘𝑅))) |
27 | 18, 26 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝐺))) |
28 | 11 | matring 21592 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ Ring) |
29 | 10, 28 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ Ring) |
30 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
31 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝐺) = (1r‘𝐺) |
32 | 30, 31 | ringidcl 19807 |
. . . . . 6
⊢ (𝐺 ∈ Ring →
(1r‘𝐺)
∈ (Base‘𝐺)) |
33 | 29, 32 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (1r‘𝐺) ∈ (Base‘𝐺)) |
34 | 13, 27, 33 | 3jca 1127 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧
(1r‘𝐺)
∈ (Base‘𝐺))) |
35 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝐺) =
(Scalar‘𝐺) |
36 | | eqid 2738 |
. . . . 5
⊢ (
·𝑠 ‘𝐺) = ( ·𝑠
‘𝐺) |
37 | | eqid 2738 |
. . . . 5
⊢
(Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺)) |
38 | 30, 35, 36, 37 | lmodvscl 20140 |
. . . 4
⊢ ((𝐺 ∈ LMod ∧ 𝑋 ∈
(Base‘(Scalar‘𝐺)) ∧ (1r‘𝐺) ∈ (Base‘𝐺)) → (𝑋( ·𝑠
‘𝐺)(1r‘𝐺)) ∈ (Base‘𝐺)) |
39 | 34, 38 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑋( ·𝑠
‘𝐺)(1r‘𝐺)) ∈ (Base‘𝐺)) |
40 | | simp1 1135 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
41 | | simp3 1137 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
42 | 19, 40, 41 | 3jca 1127 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵)) |
43 | | chpmat1dlem.x |
. . . . 5
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
44 | | chpmat1d.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
45 | | chpmat1d.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
46 | 43, 44, 45, 1, 11 | mat2pmatbas 21875 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝐺)) |
47 | 42, 46 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝐺)) |
48 | | snidg 4595 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) |
49 | 48 | adantl 482 |
. . . . . 6
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ {𝐼}) |
50 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑁 = {𝐼} → (𝐼 ∈ 𝑁 ↔ 𝐼 ∈ {𝐼})) |
51 | 50 | adantr 481 |
. . . . . 6
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (𝐼 ∈ 𝑁 ↔ 𝐼 ∈ {𝐼})) |
52 | 49, 51 | mpbird 256 |
. . . . 5
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑁) |
53 | | id 22 |
. . . . 5
⊢ (𝐼 ∈ 𝑁 → 𝐼 ∈ 𝑁) |
54 | 52, 53 | jccir 522 |
. . . 4
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) |
55 | 54 | 3ad2ant2 1133 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) |
56 | | eqid 2738 |
. . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) |
57 | | chpmat1d.z |
. . . 4
⊢ − =
(-g‘𝑃) |
58 | 11, 30, 56, 57 | matsubgcell 21583 |
. . 3
⊢ ((𝑃 ∈ Ring ∧ ((𝑋(
·𝑠 ‘𝐺)(1r‘𝐺)) ∈ (Base‘𝐺) ∧ (𝑇‘𝑀) ∈ (Base‘𝐺)) ∧ (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) → (𝐼((𝑋( ·𝑠
‘𝐺)(1r‘𝐺))(-g‘𝐺)(𝑇‘𝑀))𝐼) = ((𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) − (𝐼(𝑇‘𝑀)𝐼))) |
59 | 3, 39, 47, 55, 58 | syl121anc 1374 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼((𝑋( ·𝑠
‘𝐺)(1r‘𝐺))(-g‘𝐺)(𝑇‘𝑀))𝐼) = ((𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) − (𝐼(𝑇‘𝑀)𝐼))) |
60 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) |
61 | 14, 1, 60 | vr1cl 21388 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
62 | 61 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
63 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) |
64 | 11, 30, 60, 36, 63 | matvscacell 21585 |
. . . . 5
⊢ ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧
(1r‘𝐺)
∈ (Base‘𝐺))
∧ (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) → (𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) = (𝑋(.r‘𝑃)(𝐼(1r‘𝐺)𝐼))) |
65 | 3, 62, 33, 55, 64 | syl121anc 1374 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) = (𝑋(.r‘𝑃)(𝐼(1r‘𝐺)𝐼))) |
66 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) |
67 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) |
68 | 52 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ 𝑁) |
69 | 11, 66, 67, 19, 3, 68, 68, 31 | mat1ov 21597 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(1r‘𝐺)𝐼) = if(𝐼 = 𝐼, (1r‘𝑃), (0g‘𝑃))) |
70 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐼 = 𝐼) |
71 | 70 | iftrued 4467 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → if(𝐼 = 𝐼, (1r‘𝑃), (0g‘𝑃)) = (1r‘𝑃)) |
72 | 69, 71 | eqtrd 2778 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(1r‘𝐺)𝐼) = (1r‘𝑃)) |
73 | 72 | oveq2d 7291 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑋(.r‘𝑃)(𝐼(1r‘𝐺)𝐼)) = (𝑋(.r‘𝑃)(1r‘𝑃))) |
74 | 60, 63, 66 | ringridm 19811 |
. . . . 5
⊢ ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r‘𝑃)(1r‘𝑃)) = 𝑋) |
75 | 3, 62, 74 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑋(.r‘𝑃)(1r‘𝑃)) = 𝑋) |
76 | 65, 73, 75 | 3eqtrd 2782 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) = 𝑋) |
77 | | chpmat1d.s |
. . . . 5
⊢ 𝑆 = (algSc‘𝑃) |
78 | 43, 44, 45, 1, 77 | mat2pmatvalel 21874 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) → (𝐼(𝑇‘𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼))) |
79 | 42, 55, 78 | syl2anc 584 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼(𝑇‘𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼))) |
80 | 76, 79 | oveq12d 7293 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((𝐼(𝑋( ·𝑠
‘𝐺)(1r‘𝐺))𝐼) − (𝐼(𝑇‘𝑀)𝐼)) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) |
81 | 59, 80 | eqtrd 2778 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼((𝑋( ·𝑠
‘𝐺)(1r‘𝐺))(-g‘𝐺)(𝑇‘𝑀))𝐼) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) |