MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmat1dlem Structured version   Visualization version   GIF version

Theorem chpmat1dlem 22184
Description: Lemma for chpmat1d 22185. (Contributed by AV, 7-Aug-2019.)
Hypotheses
Ref Expression
chpmat1d.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpmat1d.p 𝑃 = (Poly1𝑅)
chpmat1d.a 𝐴 = (𝑁 Mat 𝑅)
chpmat1d.b 𝐵 = (Base‘𝐴)
chpmat1d.x 𝑋 = (var1𝑅)
chpmat1d.z = (-g𝑃)
chpmat1d.s 𝑆 = (algSc‘𝑃)
chpmat1dlem.g 𝐺 = (𝑁 Mat 𝑃)
chpmat1dlem.x 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpmat1dlem ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))

Proof of Theorem chpmat1dlem
StepHypRef Expression
1 chpmat1d.p . . . . 5 𝑃 = (Poly1𝑅)
21ply1ring 21619 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1133 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
4 snfi 8988 . . . . . . . . . . 11 {𝐼} ∈ Fin
5 eleq1 2825 . . . . . . . . . . 11 (𝑁 = {𝐼} → (𝑁 ∈ Fin ↔ {𝐼} ∈ Fin))
64, 5mpbiri 257 . . . . . . . . . 10 (𝑁 = {𝐼} → 𝑁 ∈ Fin)
76adantr 481 . . . . . . . . 9 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝑁 ∈ Fin)
82, 7anim12i 613 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉)) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
983adant3 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑁 ∈ Fin))
109ancomd 462 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
11 chpmat1dlem.g . . . . . . 7 𝐺 = (𝑁 Mat 𝑃)
1211matlmod 21778 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ LMod)
1310, 12syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ LMod)
14 chpmat1d.x . . . . . . . 8 𝑋 = (var1𝑅)
15 eqid 2736 . . . . . . . 8 (Poly1𝑅) = (Poly1𝑅)
16 eqid 2736 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1714, 15, 16vr1cl 21588 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝑅)))
18173ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Poly1𝑅)))
1973ad2ant2 1134 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
20 fvex 6855 . . . . . . . . 9 (Poly1𝑅) ∈ V
211oveq2i 7368 . . . . . . . . . . 11 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
2211, 21eqtri 2764 . . . . . . . . . 10 𝐺 = (𝑁 Mat (Poly1𝑅))
2322matsca2 21769 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ (Poly1𝑅) ∈ V) → (Poly1𝑅) = (Scalar‘𝐺))
2419, 20, 23sylancl 586 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Poly1𝑅) = (Scalar‘𝐺))
2524eqcomd 2742 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Scalar‘𝐺) = (Poly1𝑅))
2625fveq2d 6846 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(Scalar‘𝐺)) = (Base‘(Poly1𝑅)))
2718, 26eleqtrrd 2841 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝐺)))
2811matring 21792 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐺 ∈ Ring)
2910, 28syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐺 ∈ Ring)
30 eqid 2736 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
31 eqid 2736 . . . . . . 7 (1r𝐺) = (1r𝐺)
3230, 31ringidcl 19989 . . . . . 6 (𝐺 ∈ Ring → (1r𝐺) ∈ (Base‘𝐺))
3329, 32syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (1r𝐺) ∈ (Base‘𝐺))
3413, 27, 333jca 1128 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)))
35 eqid 2736 . . . . 5 (Scalar‘𝐺) = (Scalar‘𝐺)
36 eqid 2736 . . . . 5 ( ·𝑠𝐺) = ( ·𝑠𝐺)
37 eqid 2736 . . . . 5 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
3830, 35, 36, 37lmodvscl 20339 . . . 4 ((𝐺 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐺)) ∧ (1r𝐺) ∈ (Base‘𝐺)) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
3934, 38syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺))
40 simp1 1136 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
41 simp3 1138 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
4219, 40, 413jca 1128 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵))
43 chpmat1dlem.x . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
44 chpmat1d.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
45 chpmat1d.b . . . . 5 𝐵 = (Base‘𝐴)
4643, 44, 45, 1, 11mat2pmatbas 22075 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
4742, 46syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐺))
48 snidg 4620 . . . . . . 7 (𝐼𝑉𝐼 ∈ {𝐼})
4948adantl 482 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼 ∈ {𝐼})
50 eleq2 2826 . . . . . . 7 (𝑁 = {𝐼} → (𝐼𝑁𝐼 ∈ {𝐼}))
5150adantr 481 . . . . . 6 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼 ∈ {𝐼}))
5249, 51mpbird 256 . . . . 5 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼𝑁)
53 id 22 . . . . 5 (𝐼𝑁𝐼𝑁)
5452, 53jccir 522 . . . 4 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼𝑁))
55543ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁))
56 eqid 2736 . . . 4 (-g𝐺) = (-g𝐺)
57 chpmat1d.z . . . 4 = (-g𝑃)
5811, 30, 56, 57matsubgcell 21783 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋( ·𝑠𝐺)(1r𝐺)) ∈ (Base‘𝐺) ∧ (𝑇𝑀) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
593, 39, 47, 55, 58syl121anc 1375 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)))
60 eqid 2736 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
6114, 1, 60vr1cl 21588 . . . . . 6 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
62613ad2ant1 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
63 eqid 2736 . . . . . 6 (.r𝑃) = (.r𝑃)
6411, 30, 60, 36, 63matvscacell 21785 . . . . 5 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ (1r𝐺) ∈ (Base‘𝐺)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
653, 62, 33, 55, 64syl121anc 1375 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)))
66 eqid 2736 . . . . . . 7 (1r𝑃) = (1r𝑃)
67 eqid 2736 . . . . . . 7 (0g𝑃) = (0g𝑃)
68523ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑁)
6911, 66, 67, 19, 3, 68, 68, 31mat1ov 21797 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)))
70 eqidd 2737 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼 = 𝐼)
7170iftrued 4494 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → if(𝐼 = 𝐼, (1r𝑃), (0g𝑃)) = (1r𝑃))
7269, 71eqtrd 2776 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(1r𝐺)𝐼) = (1r𝑃))
7372oveq2d 7373 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(𝐼(1r𝐺)𝐼)) = (𝑋(.r𝑃)(1r𝑃)))
7460, 63, 66ringridm 19993 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
753, 62, 74syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑋(.r𝑃)(1r𝑃)) = 𝑋)
7665, 73, 753eqtrd 2780 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) = 𝑋)
77 chpmat1d.s . . . . 5 𝑆 = (algSc‘𝑃)
7843, 44, 45, 1, 77mat2pmatvalel 22074 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
7942, 55, 78syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼(𝑇𝑀)𝐼) = (𝑆‘(𝐼𝑀𝐼)))
8076, 79oveq12d 7375 . 2 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((𝐼(𝑋( ·𝑠𝐺)(1r𝐺))𝐼) (𝐼(𝑇𝑀)𝐼)) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
8159, 80eqtrd 2776 1 ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  ifcif 4486  {csn 4586  cfv 6496  (class class class)co 7357  Fincfn 8883  Basecbs 17083  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  -gcsg 18750  1rcur 19913  Ringcrg 19964  LModclmod 20322  algSccascl 21258  var1cv1 21547  Poly1cpl1 21548   Mat cmat 21754   matToPolyMat cmat2pmat 22053   CharPlyMat cchpmat 22175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-mamu 21733  df-mat 21755  df-mat2pmat 22056
This theorem is referenced by:  chpmat1d  22185
  Copyright terms: Public domain W3C validator