Proof of Theorem chpdmatlem2
Step | Hyp | Ref
| Expression |
1 | | chpdmat.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
2 | 1 | ply1ring 21419 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
3 | 2 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
4 | 3 | ad4antr 729 |
. . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → 𝑃 ∈ Ring) |
5 | | chpdmat.c |
. . . . . 6
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
6 | | chpdmat.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
7 | | chpdmat.s |
. . . . . 6
⊢ 𝑆 = (algSc‘𝑃) |
8 | | chpdmat.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
9 | | chpdmat.x |
. . . . . 6
⊢ 𝑋 = (var1‘𝑅) |
10 | | chpdmat.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
11 | | chpdmat.g |
. . . . . 6
⊢ 𝐺 = (mulGrp‘𝑃) |
12 | | chpdmat.m |
. . . . . 6
⊢ − =
(-g‘𝑃) |
13 | | chpdmatlem.q |
. . . . . 6
⊢ 𝑄 = (𝑁 Mat 𝑃) |
14 | | chpdmatlem.1 |
. . . . . 6
⊢ 1 =
(1r‘𝑄) |
15 | | chpdmatlem.m |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑄) |
16 | 5, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | chpdmatlem0 21986 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄)) |
17 | 16 | 3adant3 1131 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄)) |
18 | 17 | ad4antr 729 |
. . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑋 · 1 ) ∈ (Base‘𝑄)) |
19 | | chpdmatlem.t |
. . . . 5
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
20 | 19, 6, 8, 1, 13 | mat2pmatbas 21875 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑄)) |
21 | 20 | ad4antr 729 |
. . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑇‘𝑀) ∈ (Base‘𝑄)) |
22 | | simpr 485 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
23 | 22 | anim1i 615 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
24 | 23 | ad2antrr 723 |
. . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
25 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑄) =
(Base‘𝑄) |
26 | | chpdmatlem.z |
. . . 4
⊢ 𝑍 = (-g‘𝑄) |
27 | 13, 25, 26, 12 | matsubgcell 21583 |
. . 3
⊢ ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇‘𝑀) ∈ (Base‘𝑄)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖((𝑋 · 1 )𝑍(𝑇‘𝑀))𝑗) = ((𝑖(𝑋 · 1 )𝑗) − (𝑖(𝑇‘𝑀)𝑗))) |
28 | 4, 18, 21, 24, 27 | syl121anc 1374 |
. 2
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇‘𝑀))𝑗) = ((𝑖(𝑋 · 1 )𝑗) − (𝑖(𝑇‘𝑀)𝑗))) |
29 | 3 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ Ring) |
30 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘𝑃) |
31 | 9, 1, 30 | vr1cl 21388 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
32 | 31 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
33 | 1, 13 | pmatring 21841 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring) |
34 | 33 | 3adant3 1131 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑄 ∈ Ring) |
35 | 25, 14 | ringidcl 19807 |
. . . . . . . . 9
⊢ (𝑄 ∈ Ring → 1 ∈
(Base‘𝑄)) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 1 ∈ (Base‘𝑄)) |
37 | 32, 36 | jca 512 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄))) |
38 | 37 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄))) |
39 | 29, 38, 23 | 3jca 1127 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
40 | 39 | ad2antrr 723 |
. . . 4
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
41 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
42 | 13, 25, 30, 15, 41 | matvscacell 21585 |
. . . 4
⊢ ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑋 · 1 )𝑗) = (𝑋(.r‘𝑃)(𝑖 1 𝑗))) |
43 | 40, 42 | syl 17 |
. . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖(𝑋 · 1 )𝑗) = (𝑋(.r‘𝑃)(𝑖 1 𝑗))) |
44 | 43 | oveq1d 7290 |
. 2
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑖(𝑋 · 1 )𝑗) − (𝑖(𝑇‘𝑀)𝑗)) = ((𝑋(.r‘𝑃)(𝑖 1 𝑗)) − (𝑖(𝑇‘𝑀)𝑗))) |
45 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑃) = (1r‘𝑃) |
46 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑃) = (0g‘𝑃) |
47 | | simpll1 1211 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑁 ∈ Fin) |
48 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
49 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
50 | 13, 45, 46, 47, 29, 48, 49, 14 | mat1ov 21597 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r‘𝑃), (0g‘𝑃))) |
51 | | ifnefalse 4471 |
. . . . . . . 8
⊢ (𝑖 ≠ 𝑗 → if(𝑖 = 𝑗, (1r‘𝑃), (0g‘𝑃)) = (0g‘𝑃)) |
52 | 50, 51 | sylan9eq 2798 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) → (𝑖 1 𝑗) = (0g‘𝑃)) |
53 | 52 | oveq2d 7291 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) → (𝑋(.r‘𝑃)(𝑖 1 𝑗)) = (𝑋(.r‘𝑃)(0g‘𝑃))) |
54 | 2, 31 | jca 512 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) |
55 | 54 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) |
56 | 30, 41, 46 | ringrz 19827 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r‘𝑃)(0g‘𝑃)) = (0g‘𝑃)) |
57 | 55, 56 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑋(.r‘𝑃)(0g‘𝑃)) = (0g‘𝑃)) |
58 | 57 | adantr 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) → (𝑋(.r‘𝑃)(0g‘𝑃)) = (0g‘𝑃)) |
59 | 58 | ad2antrr 723 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) → (𝑋(.r‘𝑃)(0g‘𝑃)) = (0g‘𝑃)) |
60 | 53, 59 | eqtrd 2778 |
. . . . 5
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) → (𝑋(.r‘𝑃)(𝑖 1 𝑗)) = (0g‘𝑃)) |
61 | 60 | adantr 481 |
. . . 4
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑋(.r‘𝑃)(𝑖 1 𝑗)) = (0g‘𝑃)) |
62 | | simpll 764 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵)) |
63 | 62, 23 | jca 512 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
64 | 63 | ad2antrr 723 |
. . . . 5
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
65 | 19, 6, 8, 1, 7 | mat2pmatvalel 21874 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘𝑀)𝑗) = (𝑆‘(𝑖𝑀𝑗))) |
66 | 64, 65 | syl 17 |
. . . 4
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖(𝑇‘𝑀)𝑗) = (𝑆‘(𝑖𝑀𝑗))) |
67 | 61, 66 | oveq12d 7293 |
. . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑋(.r‘𝑃)(𝑖 1 𝑗)) − (𝑖(𝑇‘𝑀)𝑗)) = ((0g‘𝑃) − (𝑆‘(𝑖𝑀𝑗)))) |
68 | | fveq2 6774 |
. . . . . 6
⊢ ((𝑖𝑀𝑗) = 0 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆‘ 0 )) |
69 | 68 | adantl 482 |
. . . . 5
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆‘(𝑖𝑀𝑗)) = (𝑆‘ 0 )) |
70 | 1, 7, 10, 46 | ply1scl0 21461 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑆‘ 0 ) =
(0g‘𝑃)) |
71 | 70 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑆‘ 0 ) =
(0g‘𝑃)) |
72 | 71 | ad4antr 729 |
. . . . 5
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆‘ 0 ) =
(0g‘𝑃)) |
73 | 69, 72 | eqtrd 2778 |
. . . 4
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆‘(𝑖𝑀𝑗)) = (0g‘𝑃)) |
74 | 73 | oveq2d 7291 |
. . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) →
((0g‘𝑃)
−
(𝑆‘(𝑖𝑀𝑗))) = ((0g‘𝑃) −
(0g‘𝑃))) |
75 | | ringgrp 19788 |
. . . . . . . 8
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) |
76 | 2, 75 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Grp) |
77 | 30, 46 | grpidcl 18607 |
. . . . . . 7
⊢ (𝑃 ∈ Grp →
(0g‘𝑃)
∈ (Base‘𝑃)) |
78 | 76, 77 | jccir 522 |
. . . . . 6
⊢ (𝑅 ∈ Ring → (𝑃 ∈ Grp ∧
(0g‘𝑃)
∈ (Base‘𝑃))) |
79 | 78 | 3ad2ant2 1133 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑃 ∈ Grp ∧ (0g‘𝑃) ∈ (Base‘𝑃))) |
80 | 30, 46, 12 | grpsubid 18659 |
. . . . 5
⊢ ((𝑃 ∈ Grp ∧
(0g‘𝑃)
∈ (Base‘𝑃))
→ ((0g‘𝑃) −
(0g‘𝑃)) =
(0g‘𝑃)) |
81 | 79, 80 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((0g‘𝑃) −
(0g‘𝑃)) =
(0g‘𝑃)) |
82 | 81 | ad4antr 729 |
. . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) →
((0g‘𝑃)
−
(0g‘𝑃)) =
(0g‘𝑃)) |
83 | 67, 74, 82 | 3eqtrd 2782 |
. 2
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑋(.r‘𝑃)(𝑖 1 𝑗)) − (𝑖(𝑇‘𝑀)𝑗)) = (0g‘𝑃)) |
84 | 28, 44, 83 | 3eqtrd 2782 |
1
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇‘𝑀))𝑗) = (0g‘𝑃)) |