MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmatlem2 Structured version   Visualization version   GIF version

Theorem chpdmatlem2 22742
Description: Lemma 2 for chpdmat 22744. (Contributed by AV, 18-Aug-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1𝑅)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algSc‘𝑃)
chpdmat.b 𝐵 = (Base‘𝐴)
chpdmat.x 𝑋 = (var1𝑅)
chpdmat.0 0 = (0g𝑅)
chpdmat.g 𝐺 = (mulGrp‘𝑃)
chpdmat.m = (-g𝑃)
chpdmatlem.q 𝑄 = (𝑁 Mat 𝑃)
chpdmatlem.1 1 = (1r𝑄)
chpdmatlem.m · = ( ·𝑠𝑄)
chpdmatlem.z 𝑍 = (-g𝑄)
chpdmatlem.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpdmatlem2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = (0g𝑃))

Proof of Theorem chpdmatlem2
StepHypRef Expression
1 chpdmat.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1ring 22148 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant2 1134 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
43ad4antr 732 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → 𝑃 ∈ Ring)
5 chpdmat.c . . . . . 6 𝐶 = (𝑁 CharPlyMat 𝑅)
6 chpdmat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
7 chpdmat.s . . . . . 6 𝑆 = (algSc‘𝑃)
8 chpdmat.b . . . . . 6 𝐵 = (Base‘𝐴)
9 chpdmat.x . . . . . 6 𝑋 = (var1𝑅)
10 chpdmat.0 . . . . . 6 0 = (0g𝑅)
11 chpdmat.g . . . . . 6 𝐺 = (mulGrp‘𝑃)
12 chpdmat.m . . . . . 6 = (-g𝑃)
13 chpdmatlem.q . . . . . 6 𝑄 = (𝑁 Mat 𝑃)
14 chpdmatlem.1 . . . . . 6 1 = (1r𝑄)
15 chpdmatlem.m . . . . . 6 · = ( ·𝑠𝑄)
165, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15chpdmatlem0 22740 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))
17163adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄))
1817ad4antr 732 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑋 · 1 ) ∈ (Base‘𝑄))
19 chpdmatlem.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
2019, 6, 8, 1, 13mat2pmatbas 22629 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑄))
2120ad4antr 732 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑇𝑀) ∈ (Base‘𝑄))
22 simpr 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) → 𝑖𝑁)
2322anim1i 615 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑖𝑁𝑗𝑁))
2423ad2antrr 726 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖𝑁𝑗𝑁))
25 eqid 2729 . . . 4 (Base‘𝑄) = (Base‘𝑄)
26 chpdmatlem.z . . . 4 𝑍 = (-g𝑄)
2713, 25, 26, 12matsubgcell 22337 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = ((𝑖(𝑋 · 1 )𝑗) (𝑖(𝑇𝑀)𝑗)))
284, 18, 21, 24, 27syl121anc 1377 . 2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = ((𝑖(𝑋 · 1 )𝑗) (𝑖(𝑇𝑀)𝑗)))
293ad2antrr 726 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑃 ∈ Ring)
30 eqid 2729 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
319, 1, 30vr1cl 22118 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
32313ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
331, 13pmatring 22595 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
34333adant3 1132 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑄 ∈ Ring)
3525, 14ringidcl 20168 . . . . . . . . 9 (𝑄 ∈ Ring → 1 ∈ (Base‘𝑄))
3634, 35syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑄))
3732, 36jca 511 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
3837ad2antrr 726 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
3929, 38, 233jca 1128 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)))
4039ad2antrr 726 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)))
41 eqid 2729 . . . . 5 (.r𝑃) = (.r𝑃)
4213, 25, 30, 15, 41matvscacell 22339 . . . 4 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 1 )𝑗) = (𝑋(.r𝑃)(𝑖 1 𝑗)))
4340, 42syl 17 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖(𝑋 · 1 )𝑗) = (𝑋(.r𝑃)(𝑖 1 𝑗)))
4443oveq1d 7368 . 2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑖(𝑋 · 1 )𝑗) (𝑖(𝑇𝑀)𝑗)) = ((𝑋(.r𝑃)(𝑖 1 𝑗)) (𝑖(𝑇𝑀)𝑗)))
45 eqid 2729 . . . . . . . . 9 (1r𝑃) = (1r𝑃)
46 eqid 2729 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
47 simpll1 1213 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑁 ∈ Fin)
4822adantr 480 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
49 simpr 484 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
5013, 45, 46, 47, 29, 48, 49, 14mat1ov 22351 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))
51 ifnefalse 4490 . . . . . . . 8 (𝑖𝑗 → if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)) = (0g𝑃))
5250, 51sylan9eq 2784 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑖 1 𝑗) = (0g𝑃))
5352oveq2d 7369 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑋(.r𝑃)(𝑖 1 𝑗)) = (𝑋(.r𝑃)(0g𝑃)))
542, 31jca 511 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
55543ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
5630, 41, 46ringrz 20197 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
5755, 56syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
5857adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
5958ad2antrr 726 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
6053, 59eqtrd 2764 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑋(.r𝑃)(𝑖 1 𝑗)) = (0g𝑃))
6160adantr 480 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑋(.r𝑃)(𝑖 1 𝑗)) = (0g𝑃))
62 simpll 766 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵))
6362, 23jca 511 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
6463ad2antrr 726 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
6519, 6, 8, 1, 7mat2pmatvalel 22628 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑀)𝑗) = (𝑆‘(𝑖𝑀𝑗)))
6664, 65syl 17 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖(𝑇𝑀)𝑗) = (𝑆‘(𝑖𝑀𝑗)))
6761, 66oveq12d 7371 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑋(.r𝑃)(𝑖 1 𝑗)) (𝑖(𝑇𝑀)𝑗)) = ((0g𝑃) (𝑆‘(𝑖𝑀𝑗))))
68 fveq2 6826 . . . . . 6 ((𝑖𝑀𝑗) = 0 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆0 ))
6968adantl 481 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆‘(𝑖𝑀𝑗)) = (𝑆0 ))
701, 7, 10, 46ply1scl0 22192 . . . . . . 7 (𝑅 ∈ Ring → (𝑆0 ) = (0g𝑃))
71703ad2ant2 1134 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑆0 ) = (0g𝑃))
7271ad4antr 732 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆0 ) = (0g𝑃))
7369, 72eqtrd 2764 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆‘(𝑖𝑀𝑗)) = (0g𝑃))
7473oveq2d 7369 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((0g𝑃) (𝑆‘(𝑖𝑀𝑗))) = ((0g𝑃) (0g𝑃)))
75 ringgrp 20141 . . . . . . . 8 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
762, 75syl 17 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Grp)
7730, 46grpidcl 18862 . . . . . . 7 (𝑃 ∈ Grp → (0g𝑃) ∈ (Base‘𝑃))
7876, 77jccir 521 . . . . . 6 (𝑅 ∈ Ring → (𝑃 ∈ Grp ∧ (0g𝑃) ∈ (Base‘𝑃)))
79783ad2ant2 1134 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑃 ∈ Grp ∧ (0g𝑃) ∈ (Base‘𝑃)))
8030, 46, 12grpsubid 18921 . . . . 5 ((𝑃 ∈ Grp ∧ (0g𝑃) ∈ (Base‘𝑃)) → ((0g𝑃) (0g𝑃)) = (0g𝑃))
8179, 80syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((0g𝑃) (0g𝑃)) = (0g𝑃))
8281ad4antr 732 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((0g𝑃) (0g𝑃)) = (0g𝑃))
8367, 74, 823eqtrd 2768 . 2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑋(.r𝑃)(𝑖 1 𝑗)) (𝑖(𝑇𝑀)𝑗)) = (0g𝑃))
8428, 44, 833eqtrd 2768 1 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = (0g𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  ifcif 4478  cfv 6486  (class class class)co 7353  Fincfn 8879  Basecbs 17138  .rcmulr 17180   ·𝑠 cvsca 17183  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  mulGrpcmgp 20043  1rcur 20084  Ringcrg 20136  algSccascl 21777  var1cv1 22076  Poly1cpl1 22077   Mat cmat 22310   matToPolyMat cmat2pmat 22607   CharPlyMat cchpmat 22729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-mamu 22294  df-mat 22311  df-mat2pmat 22610
This theorem is referenced by:  chpdmat  22744
  Copyright terms: Public domain W3C validator