MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmatlem2 Structured version   Visualization version   GIF version

Theorem chpdmatlem2 21988
Description: Lemma 2 for chpdmat 21990. (Contributed by AV, 18-Aug-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1𝑅)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algSc‘𝑃)
chpdmat.b 𝐵 = (Base‘𝐴)
chpdmat.x 𝑋 = (var1𝑅)
chpdmat.0 0 = (0g𝑅)
chpdmat.g 𝐺 = (mulGrp‘𝑃)
chpdmat.m = (-g𝑃)
chpdmatlem.q 𝑄 = (𝑁 Mat 𝑃)
chpdmatlem.1 1 = (1r𝑄)
chpdmatlem.m · = ( ·𝑠𝑄)
chpdmatlem.z 𝑍 = (-g𝑄)
chpdmatlem.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpdmatlem2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = (0g𝑃))

Proof of Theorem chpdmatlem2
StepHypRef Expression
1 chpdmat.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1ring 21419 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant2 1133 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
43ad4antr 729 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → 𝑃 ∈ Ring)
5 chpdmat.c . . . . . 6 𝐶 = (𝑁 CharPlyMat 𝑅)
6 chpdmat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
7 chpdmat.s . . . . . 6 𝑆 = (algSc‘𝑃)
8 chpdmat.b . . . . . 6 𝐵 = (Base‘𝐴)
9 chpdmat.x . . . . . 6 𝑋 = (var1𝑅)
10 chpdmat.0 . . . . . 6 0 = (0g𝑅)
11 chpdmat.g . . . . . 6 𝐺 = (mulGrp‘𝑃)
12 chpdmat.m . . . . . 6 = (-g𝑃)
13 chpdmatlem.q . . . . . 6 𝑄 = (𝑁 Mat 𝑃)
14 chpdmatlem.1 . . . . . 6 1 = (1r𝑄)
15 chpdmatlem.m . . . . . 6 · = ( ·𝑠𝑄)
165, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15chpdmatlem0 21986 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))
17163adant3 1131 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄))
1817ad4antr 729 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑋 · 1 ) ∈ (Base‘𝑄))
19 chpdmatlem.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
2019, 6, 8, 1, 13mat2pmatbas 21875 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑄))
2120ad4antr 729 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑇𝑀) ∈ (Base‘𝑄))
22 simpr 485 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) → 𝑖𝑁)
2322anim1i 615 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑖𝑁𝑗𝑁))
2423ad2antrr 723 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖𝑁𝑗𝑁))
25 eqid 2738 . . . 4 (Base‘𝑄) = (Base‘𝑄)
26 chpdmatlem.z . . . 4 𝑍 = (-g𝑄)
2713, 25, 26, 12matsubgcell 21583 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = ((𝑖(𝑋 · 1 )𝑗) (𝑖(𝑇𝑀)𝑗)))
284, 18, 21, 24, 27syl121anc 1374 . 2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = ((𝑖(𝑋 · 1 )𝑗) (𝑖(𝑇𝑀)𝑗)))
293ad2antrr 723 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑃 ∈ Ring)
30 eqid 2738 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
319, 1, 30vr1cl 21388 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
32313ad2ant2 1133 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
331, 13pmatring 21841 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
34333adant3 1131 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑄 ∈ Ring)
3525, 14ringidcl 19807 . . . . . . . . 9 (𝑄 ∈ Ring → 1 ∈ (Base‘𝑄))
3634, 35syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑄))
3732, 36jca 512 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
3837ad2antrr 723 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
3929, 38, 233jca 1127 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)))
4039ad2antrr 723 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)))
41 eqid 2738 . . . . 5 (.r𝑃) = (.r𝑃)
4213, 25, 30, 15, 41matvscacell 21585 . . . 4 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 1 )𝑗) = (𝑋(.r𝑃)(𝑖 1 𝑗)))
4340, 42syl 17 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖(𝑋 · 1 )𝑗) = (𝑋(.r𝑃)(𝑖 1 𝑗)))
4443oveq1d 7290 . 2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑖(𝑋 · 1 )𝑗) (𝑖(𝑇𝑀)𝑗)) = ((𝑋(.r𝑃)(𝑖 1 𝑗)) (𝑖(𝑇𝑀)𝑗)))
45 eqid 2738 . . . . . . . . 9 (1r𝑃) = (1r𝑃)
46 eqid 2738 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
47 simpll1 1211 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑁 ∈ Fin)
4822adantr 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
49 simpr 485 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
5013, 45, 46, 47, 29, 48, 49, 14mat1ov 21597 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))
51 ifnefalse 4471 . . . . . . . 8 (𝑖𝑗 → if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)) = (0g𝑃))
5250, 51sylan9eq 2798 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑖 1 𝑗) = (0g𝑃))
5352oveq2d 7291 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑋(.r𝑃)(𝑖 1 𝑗)) = (𝑋(.r𝑃)(0g𝑃)))
542, 31jca 512 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
55543ad2ant2 1133 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
5630, 41, 46ringrz 19827 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
5755, 56syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
5857adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
5958ad2antrr 723 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
6053, 59eqtrd 2778 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑋(.r𝑃)(𝑖 1 𝑗)) = (0g𝑃))
6160adantr 481 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑋(.r𝑃)(𝑖 1 𝑗)) = (0g𝑃))
62 simpll 764 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵))
6362, 23jca 512 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
6463ad2antrr 723 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
6519, 6, 8, 1, 7mat2pmatvalel 21874 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑀)𝑗) = (𝑆‘(𝑖𝑀𝑗)))
6664, 65syl 17 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖(𝑇𝑀)𝑗) = (𝑆‘(𝑖𝑀𝑗)))
6761, 66oveq12d 7293 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑋(.r𝑃)(𝑖 1 𝑗)) (𝑖(𝑇𝑀)𝑗)) = ((0g𝑃) (𝑆‘(𝑖𝑀𝑗))))
68 fveq2 6774 . . . . . 6 ((𝑖𝑀𝑗) = 0 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆0 ))
6968adantl 482 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆‘(𝑖𝑀𝑗)) = (𝑆0 ))
701, 7, 10, 46ply1scl0 21461 . . . . . . 7 (𝑅 ∈ Ring → (𝑆0 ) = (0g𝑃))
71703ad2ant2 1133 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑆0 ) = (0g𝑃))
7271ad4antr 729 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆0 ) = (0g𝑃))
7369, 72eqtrd 2778 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆‘(𝑖𝑀𝑗)) = (0g𝑃))
7473oveq2d 7291 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((0g𝑃) (𝑆‘(𝑖𝑀𝑗))) = ((0g𝑃) (0g𝑃)))
75 ringgrp 19788 . . . . . . . 8 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
762, 75syl 17 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Grp)
7730, 46grpidcl 18607 . . . . . . 7 (𝑃 ∈ Grp → (0g𝑃) ∈ (Base‘𝑃))
7876, 77jccir 522 . . . . . 6 (𝑅 ∈ Ring → (𝑃 ∈ Grp ∧ (0g𝑃) ∈ (Base‘𝑃)))
79783ad2ant2 1133 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑃 ∈ Grp ∧ (0g𝑃) ∈ (Base‘𝑃)))
8030, 46, 12grpsubid 18659 . . . . 5 ((𝑃 ∈ Grp ∧ (0g𝑃) ∈ (Base‘𝑃)) → ((0g𝑃) (0g𝑃)) = (0g𝑃))
8179, 80syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((0g𝑃) (0g𝑃)) = (0g𝑃))
8281ad4antr 729 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((0g𝑃) (0g𝑃)) = (0g𝑃))
8367, 74, 823eqtrd 2782 . 2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑋(.r𝑃)(𝑖 1 𝑗)) (𝑖(𝑇𝑀)𝑗)) = (0g𝑃))
8428, 44, 833eqtrd 2782 1 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = (0g𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  ifcif 4459  cfv 6433  (class class class)co 7275  Fincfn 8733  Basecbs 16912  .rcmulr 16963   ·𝑠 cvsca 16966  0gc0g 17150  Grpcgrp 18577  -gcsg 18579  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783  algSccascl 21059  var1cv1 21347  Poly1cpl1 21348   Mat cmat 21554   matToPolyMat cmat2pmat 21853   CharPlyMat cchpmat 21975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-mamu 21533  df-mat 21555  df-mat2pmat 21856
This theorem is referenced by:  chpdmat  21990
  Copyright terms: Public domain W3C validator