![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2cycl2d | Structured version Visualization version GIF version |
Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
Ref | Expression |
---|---|
2cycl2d.1 | ⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 |
2cycl2d.2 | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2cycl2d.3 | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
2cycl2d.4 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
2cycl2d.5 | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) |
2cycl2d.6 | ⊢ 𝑉 = (Vtx‘𝐺) |
2cycl2d.7 | ⊢ 𝐼 = (iEdg‘𝐺) |
2cycl2d.8 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
Ref | Expression |
---|---|
2cycl2d | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cycl2d.1 | . 2 ⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 | |
2 | 2cycl2d.2 | . 2 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2cycl2d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
4 | simpl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
5 | 3, 4 | jccir 520 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ∈ 𝑉)) |
6 | df-3an 1086 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ∈ 𝑉)) | |
7 | 5, 6 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) |
8 | 2cycl2d.4 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
9 | 8 | necomd 2986 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
10 | 8, 9 | jca 510 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐴)) |
11 | 2cycl2d.5 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) | |
12 | prcom 4731 | . . . . 5 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
13 | 12 | sseq1i 4007 | . . . 4 ⊢ ({𝐴, 𝐵} ⊆ (𝐼‘𝐾) ↔ {𝐵, 𝐴} ⊆ (𝐼‘𝐾)) |
14 | 13 | anbi2i 621 | . . 3 ⊢ (({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾)) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼‘𝐾))) |
15 | 11, 14 | sylib 217 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼‘𝐾))) |
16 | 2cycl2d.6 | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
17 | 2cycl2d.7 | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
18 | 2cycl2d.8 | . 2 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
19 | eqidd 2727 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
20 | 1, 2, 7, 10, 15, 16, 17, 18, 19 | 2cycld 34979 | 1 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ⊆ wss 3946 {cpr 4625 class class class wbr 5145 ‘cfv 6546 〈“cs2 14845 〈“cs3 14846 Vtxcvtx 28929 iEdgciedg 28930 Cyclesccycls 29719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-fzo 13676 df-hash 14343 df-word 14518 df-concat 14574 df-s1 14599 df-s2 14852 df-s3 14853 df-wlks 29533 df-trls 29626 df-pths 29650 df-cycls 29721 |
This theorem is referenced by: umgr2cycllem 34981 |
Copyright terms: Public domain | W3C validator |