| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2cycl2d | Structured version Visualization version GIF version | ||
| Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
| Ref | Expression |
|---|---|
| 2cycl2d.1 | ⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 |
| 2cycl2d.2 | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2cycl2d.3 | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
| 2cycl2d.4 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 2cycl2d.5 | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) |
| 2cycl2d.6 | ⊢ 𝑉 = (Vtx‘𝐺) |
| 2cycl2d.7 | ⊢ 𝐼 = (iEdg‘𝐺) |
| 2cycl2d.8 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
| Ref | Expression |
|---|---|
| 2cycl2d | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cycl2d.1 | . 2 ⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 | |
| 2 | 2cycl2d.2 | . 2 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 3 | 2cycl2d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
| 4 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 5 | 3, 4 | jccir 521 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ∈ 𝑉)) |
| 6 | df-3an 1088 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ∈ 𝑉)) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) |
| 8 | 2cycl2d.4 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 9 | 8 | necomd 2984 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| 10 | 8, 9 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐴)) |
| 11 | 2cycl2d.5 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) | |
| 12 | prcom 4686 | . . . . 5 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 13 | 12 | sseq1i 3959 | . . . 4 ⊢ ({𝐴, 𝐵} ⊆ (𝐼‘𝐾) ↔ {𝐵, 𝐴} ⊆ (𝐼‘𝐾)) |
| 14 | 13 | anbi2i 623 | . . 3 ⊢ (({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾)) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼‘𝐾))) |
| 15 | 11, 14 | sylib 218 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼‘𝐾))) |
| 16 | 2cycl2d.6 | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 17 | 2cycl2d.7 | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 18 | 2cycl2d.8 | . 2 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
| 19 | eqidd 2734 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 20 | 1, 2, 7, 10, 15, 16, 17, 18, 19 | 2cycld 35254 | 1 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 {cpr 4579 class class class wbr 5095 ‘cfv 6489 〈“cs2 14755 〈“cs3 14756 Vtxcvtx 28995 iEdgciedg 28996 Cyclesccycls 29784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-concat 14485 df-s1 14511 df-s2 14762 df-s3 14763 df-wlks 29599 df-trls 29690 df-pths 29713 df-cycls 29786 |
| This theorem is referenced by: umgr2cycllem 35256 |
| Copyright terms: Public domain | W3C validator |