Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2cycl2d Structured version   Visualization version   GIF version

Theorem 2cycl2d 33341
Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.)
Hypotheses
Ref Expression
2cycl2d.1 𝑃 = ⟨“𝐴𝐵𝐴”⟩
2cycl2d.2 𝐹 = ⟨“𝐽𝐾”⟩
2cycl2d.3 (𝜑 → (𝐴𝑉𝐵𝑉))
2cycl2d.4 (𝜑𝐴𝐵)
2cycl2d.5 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼𝐾)))
2cycl2d.6 𝑉 = (Vtx‘𝐺)
2cycl2d.7 𝐼 = (iEdg‘𝐺)
2cycl2d.8 (𝜑𝐽𝐾)
Assertion
Ref Expression
2cycl2d (𝜑𝐹(Cycles‘𝐺)𝑃)

Proof of Theorem 2cycl2d
StepHypRef Expression
1 2cycl2d.1 . 2 𝑃 = ⟨“𝐴𝐵𝐴”⟩
2 2cycl2d.2 . 2 𝐹 = ⟨“𝐽𝐾”⟩
3 2cycl2d.3 . . . 4 (𝜑 → (𝐴𝑉𝐵𝑉))
4 simpl 483 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
53, 4jccir 522 . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ 𝐴𝑉))
6 df-3an 1088 . . 3 ((𝐴𝑉𝐵𝑉𝐴𝑉) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝐴𝑉))
75, 6sylibr 233 . 2 (𝜑 → (𝐴𝑉𝐵𝑉𝐴𝑉))
8 2cycl2d.4 . . 3 (𝜑𝐴𝐵)
98necomd 2996 . . 3 (𝜑𝐵𝐴)
108, 9jca 512 . 2 (𝜑 → (𝐴𝐵𝐵𝐴))
11 2cycl2d.5 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼𝐾)))
12 prcom 4679 . . . . 5 {𝐴, 𝐵} = {𝐵, 𝐴}
1312sseq1i 3959 . . . 4 ({𝐴, 𝐵} ⊆ (𝐼𝐾) ↔ {𝐵, 𝐴} ⊆ (𝐼𝐾))
1413anbi2i 623 . . 3 (({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼𝐾)) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼𝐾)))
1511, 14sylib 217 . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼𝐾)))
16 2cycl2d.6 . 2 𝑉 = (Vtx‘𝐺)
17 2cycl2d.7 . 2 𝐼 = (iEdg‘𝐺)
18 2cycl2d.8 . 2 (𝜑𝐽𝐾)
19 eqidd 2737 . 2 (𝜑𝐴 = 𝐴)
201, 2, 7, 10, 15, 16, 17, 18, 192cycld 33340 1 (𝜑𝐹(Cycles‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wss 3897  {cpr 4574   class class class wbr 5089  cfv 6473  ⟨“cs2 14645  ⟨“cs3 14646  Vtxcvtx 27596  iEdgciedg 27597  Cyclesccycls 28382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-3 12130  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333  df-fzo 13476  df-hash 14138  df-word 14310  df-concat 14366  df-s1 14392  df-s2 14652  df-s3 14653  df-wlks 28196  df-trls 28289  df-pths 28313  df-cycls 28384
This theorem is referenced by:  umgr2cycllem  33342
  Copyright terms: Public domain W3C validator