Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2cycl2d Structured version   Visualization version   GIF version

Theorem 2cycl2d 35255
Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.)
Hypotheses
Ref Expression
2cycl2d.1 𝑃 = ⟨“𝐴𝐵𝐴”⟩
2cycl2d.2 𝐹 = ⟨“𝐽𝐾”⟩
2cycl2d.3 (𝜑 → (𝐴𝑉𝐵𝑉))
2cycl2d.4 (𝜑𝐴𝐵)
2cycl2d.5 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼𝐾)))
2cycl2d.6 𝑉 = (Vtx‘𝐺)
2cycl2d.7 𝐼 = (iEdg‘𝐺)
2cycl2d.8 (𝜑𝐽𝐾)
Assertion
Ref Expression
2cycl2d (𝜑𝐹(Cycles‘𝐺)𝑃)

Proof of Theorem 2cycl2d
StepHypRef Expression
1 2cycl2d.1 . 2 𝑃 = ⟨“𝐴𝐵𝐴”⟩
2 2cycl2d.2 . 2 𝐹 = ⟨“𝐽𝐾”⟩
3 2cycl2d.3 . . . 4 (𝜑 → (𝐴𝑉𝐵𝑉))
4 simpl 482 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
53, 4jccir 521 . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ 𝐴𝑉))
6 df-3an 1088 . . 3 ((𝐴𝑉𝐵𝑉𝐴𝑉) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝐴𝑉))
75, 6sylibr 234 . 2 (𝜑 → (𝐴𝑉𝐵𝑉𝐴𝑉))
8 2cycl2d.4 . . 3 (𝜑𝐴𝐵)
98necomd 2984 . . 3 (𝜑𝐵𝐴)
108, 9jca 511 . 2 (𝜑 → (𝐴𝐵𝐵𝐴))
11 2cycl2d.5 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼𝐾)))
12 prcom 4686 . . . . 5 {𝐴, 𝐵} = {𝐵, 𝐴}
1312sseq1i 3959 . . . 4 ({𝐴, 𝐵} ⊆ (𝐼𝐾) ↔ {𝐵, 𝐴} ⊆ (𝐼𝐾))
1413anbi2i 623 . . 3 (({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼𝐾)) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼𝐾)))
1511, 14sylib 218 . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼𝐾)))
16 2cycl2d.6 . 2 𝑉 = (Vtx‘𝐺)
17 2cycl2d.7 . 2 𝐼 = (iEdg‘𝐺)
18 2cycl2d.8 . 2 (𝜑𝐽𝐾)
19 eqidd 2734 . 2 (𝜑𝐴 = 𝐴)
201, 2, 7, 10, 15, 16, 17, 18, 192cycld 35254 1 (𝜑𝐹(Cycles‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wss 3898  {cpr 4579   class class class wbr 5095  cfv 6489  ⟨“cs2 14755  ⟨“cs3 14756  Vtxcvtx 28995  iEdgciedg 28996  Cyclesccycls 29784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-hash 14245  df-word 14428  df-concat 14485  df-s1 14511  df-s2 14762  df-s3 14763  df-wlks 29599  df-trls 29690  df-pths 29713  df-cycls 29786
This theorem is referenced by:  umgr2cycllem  35256
  Copyright terms: Public domain W3C validator