Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2cycl2d | Structured version Visualization version GIF version |
Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
Ref | Expression |
---|---|
2cycl2d.1 | ⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 |
2cycl2d.2 | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2cycl2d.3 | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
2cycl2d.4 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
2cycl2d.5 | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) |
2cycl2d.6 | ⊢ 𝑉 = (Vtx‘𝐺) |
2cycl2d.7 | ⊢ 𝐼 = (iEdg‘𝐺) |
2cycl2d.8 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
Ref | Expression |
---|---|
2cycl2d | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cycl2d.1 | . 2 ⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 | |
2 | 2cycl2d.2 | . 2 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2cycl2d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
4 | simpl 486 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
5 | 3, 4 | jccir 525 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ∈ 𝑉)) |
6 | df-3an 1087 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ∈ 𝑉)) | |
7 | 5, 6 | sylibr 237 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) |
8 | 2cycl2d.4 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
9 | 8 | necomd 3007 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
10 | 8, 9 | jca 515 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐴)) |
11 | 2cycl2d.5 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) | |
12 | prcom 4629 | . . . . 5 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
13 | 12 | sseq1i 3923 | . . . 4 ⊢ ({𝐴, 𝐵} ⊆ (𝐼‘𝐾) ↔ {𝐵, 𝐴} ⊆ (𝐼‘𝐾)) |
14 | 13 | anbi2i 625 | . . 3 ⊢ (({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾)) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼‘𝐾))) |
15 | 11, 14 | sylib 221 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼‘𝐾))) |
16 | 2cycl2d.6 | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
17 | 2cycl2d.7 | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
18 | 2cycl2d.8 | . 2 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
19 | eqidd 2760 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
20 | 1, 2, 7, 10, 15, 16, 17, 18, 19 | 2cycld 32630 | 1 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ⊆ wss 3861 {cpr 4528 class class class wbr 5037 ‘cfv 6341 〈“cs2 14264 〈“cs3 14265 Vtxcvtx 26903 iEdgciedg 26904 Cyclesccycls 27688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-map 8425 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-3 11752 df-n0 11949 df-z 12035 df-uz 12297 df-fz 12954 df-fzo 13097 df-hash 13755 df-word 13928 df-concat 13984 df-s1 14011 df-s2 14271 df-s3 14272 df-wlks 27503 df-trls 27596 df-pths 27619 df-cycls 27690 |
This theorem is referenced by: umgr2cycllem 32632 |
Copyright terms: Public domain | W3C validator |