Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2cycl2d Structured version   Visualization version   GIF version

Theorem 2cycl2d 35107
Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.)
Hypotheses
Ref Expression
2cycl2d.1 𝑃 = ⟨“𝐴𝐵𝐴”⟩
2cycl2d.2 𝐹 = ⟨“𝐽𝐾”⟩
2cycl2d.3 (𝜑 → (𝐴𝑉𝐵𝑉))
2cycl2d.4 (𝜑𝐴𝐵)
2cycl2d.5 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼𝐾)))
2cycl2d.6 𝑉 = (Vtx‘𝐺)
2cycl2d.7 𝐼 = (iEdg‘𝐺)
2cycl2d.8 (𝜑𝐽𝐾)
Assertion
Ref Expression
2cycl2d (𝜑𝐹(Cycles‘𝐺)𝑃)

Proof of Theorem 2cycl2d
StepHypRef Expression
1 2cycl2d.1 . 2 𝑃 = ⟨“𝐴𝐵𝐴”⟩
2 2cycl2d.2 . 2 𝐹 = ⟨“𝐽𝐾”⟩
3 2cycl2d.3 . . . 4 (𝜑 → (𝐴𝑉𝐵𝑉))
4 simpl 482 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
53, 4jccir 521 . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ 𝐴𝑉))
6 df-3an 1089 . . 3 ((𝐴𝑉𝐵𝑉𝐴𝑉) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝐴𝑉))
75, 6sylibr 234 . 2 (𝜑 → (𝐴𝑉𝐵𝑉𝐴𝑉))
8 2cycl2d.4 . . 3 (𝜑𝐴𝐵)
98necomd 3002 . . 3 (𝜑𝐵𝐴)
108, 9jca 511 . 2 (𝜑 → (𝐴𝐵𝐵𝐴))
11 2cycl2d.5 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼𝐾)))
12 prcom 4757 . . . . 5 {𝐴, 𝐵} = {𝐵, 𝐴}
1312sseq1i 4037 . . . 4 ({𝐴, 𝐵} ⊆ (𝐼𝐾) ↔ {𝐵, 𝐴} ⊆ (𝐼𝐾))
1413anbi2i 622 . . 3 (({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼𝐾)) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼𝐾)))
1511, 14sylib 218 . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐴} ⊆ (𝐼𝐾)))
16 2cycl2d.6 . 2 𝑉 = (Vtx‘𝐺)
17 2cycl2d.7 . 2 𝐼 = (iEdg‘𝐺)
18 2cycl2d.8 . 2 (𝜑𝐽𝐾)
19 eqidd 2741 . 2 (𝜑𝐴 = 𝐴)
201, 2, 7, 10, 15, 16, 17, 18, 192cycld 35106 1 (𝜑𝐹(Cycles‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wss 3976  {cpr 4650   class class class wbr 5166  cfv 6573  ⟨“cs2 14890  ⟨“cs3 14891  Vtxcvtx 29031  iEdgciedg 29032  Cyclesccycls 29821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-wlks 29635  df-trls 29728  df-pths 29752  df-cycls 29823
This theorem is referenced by:  umgr2cycllem  35108
  Copyright terms: Public domain W3C validator