MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmax Structured version   Visualization version   GIF version

Theorem mbfmax 25703
Description: The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfmax.1 (𝜑𝐹:𝐴⟶ℝ)
mbfmax.2 (𝜑𝐹 ∈ MblFn)
mbfmax.3 (𝜑𝐺:𝐴⟶ℝ)
mbfmax.4 (𝜑𝐺 ∈ MblFn)
mbfmax.5 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
Assertion
Ref Expression
mbfmax (𝜑𝐻 ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem mbfmax
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmax.3 . . . . 5 (𝜑𝐺:𝐴⟶ℝ)
21ffvelcdmda 7118 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
3 mbfmax.1 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
43ffvelcdmda 7118 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
52, 4ifcld 4594 . . 3 ((𝜑𝑥𝐴) → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) ∈ ℝ)
6 mbfmax.5 . . 3 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
75, 6fmptd 7148 . 2 (𝜑𝐻:𝐴⟶ℝ)
83adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐹:𝐴⟶ℝ)
98ffvelcdmda 7118 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
109rexrd 11340 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ*)
111adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐺:𝐴⟶ℝ)
1211ffvelcdmda 7118 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
1312rexrd 11340 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ*)
14 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → 𝑦 ∈ ℝ*)
15 xrmaxle 13245 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1610, 13, 14, 15syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1716notbid 318 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
18 ianor 982 . . . . . . . . . 10 (¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦))
1917, 18bitrdi 287 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
20 pnfxr 11344 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
21 elioo2 13448 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2214, 20, 21sylancl 585 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
23 3anan12 1096 . . . . . . . . . . . 12 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2422, 23bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
25 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
26 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
2725, 26breq12d 5179 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑥) ≤ (𝐺𝑥) ↔ (𝐹𝑧) ≤ (𝐺𝑧)))
2827, 26, 25ifbieq12d 4576 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
29 fvex 6933 . . . . . . . . . . . . . . 15 (𝐺𝑧) ∈ V
30 fvex 6933 . . . . . . . . . . . . . . 15 (𝐹𝑧) ∈ V
3129, 30ifex 4598 . . . . . . . . . . . . . 14 if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ V
3228, 6, 31fvmpt 7029 . . . . . . . . . . . . 13 (𝑧𝐴 → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3332adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3433eleq1d 2829 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞)))
3512, 9ifcld 4594 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ)
36 ltpnf 13183 . . . . . . . . . . . . 13 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)
3735, 36jccir 521 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))
3837biantrud 531 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
3924, 34, 383bitr4d 311 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
4035rexrd 11340 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*)
41 xrltnle 11357 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4214, 40, 41syl2anc 583 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4339, 42bitrd 279 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
44 elioo2 13448 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
4514, 20, 44sylancl 585 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
46 3anan12 1096 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞)))
4745, 46bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
48 ltpnf 13183 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → (𝐹𝑧) < +∞)
499, 48jccir 521 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))
5049biantrud 531 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
51 xrltnle 11357 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐹𝑧) ∈ ℝ*) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5214, 10, 51syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5347, 50, 523bitr2d 307 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
54 elioo2 13448 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
5514, 20, 54sylancl 585 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
56 3anan12 1096 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞)))
5755, 56bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
58 ltpnf 13183 . . . . . . . . . . . . 13 ((𝐺𝑧) ∈ ℝ → (𝐺𝑧) < +∞)
5912, 58jccir 521 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))
6059biantrud 531 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
61 xrltnle 11357 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6214, 13, 61syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6357, 60, 623bitr2d 307 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6453, 63orbi12d 917 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
6519, 43, 643bitr4d 311 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6665pm5.32da 578 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
67 andi 1008 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6866, 67bitrdi 287 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
697ffnd 6748 . . . . . . . 8 (𝜑𝐻 Fn 𝐴)
7069adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → 𝐻 Fn 𝐴)
71 elpreima 7091 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
7270, 71syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
738ffnd 6748 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐹 Fn 𝐴)
74 elpreima 7091 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
7573, 74syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
7611ffnd 6748 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐺 Fn 𝐴)
77 elpreima 7091 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
7876, 77syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
7975, 78orbi12d 917 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
8068, 72, 793bitr4d 311 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞)))))
81 elun 4176 . . . . 5 (𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))))
8280, 81bitr4di 289 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ 𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞)))))
8382eqrdv 2738 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) = ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))))
84 mbfmax.2 . . . . . 6 (𝜑𝐹 ∈ MblFn)
85 mbfima 25684 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
8684, 3, 85syl2anc 583 . . . . 5 (𝜑 → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
87 mbfmax.4 . . . . . 6 (𝜑𝐺 ∈ MblFn)
88 mbfima 25684 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
8987, 1, 88syl2anc 583 . . . . 5 (𝜑 → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
90 unmbl 25591 . . . . 5 (((𝐹 “ (𝑦(,)+∞)) ∈ dom vol ∧ (𝐺 “ (𝑦(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9186, 89, 90syl2anc 583 . . . 4 (𝜑 → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9291adantr 480 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9383, 92eqeltrd 2844 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) ∈ dom vol)
94 xrmaxlt 13243 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
9510, 13, 14, 94syl3anc 1371 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
96 mnfxr 11347 . . . . . . . . . . . 12 -∞ ∈ ℝ*
97 elioo2 13448 . . . . . . . . . . . 12 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
9896, 14, 97sylancr 586 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
99 df-3an 1089 . . . . . . . . . . 11 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
10098, 99bitrdi 287 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
10133eleq1d 2829 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦)))
102 mnflt 13186 . . . . . . . . . . . 12 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
10335, 102jccir 521 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
104103biantrurd 532 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
105100, 101, 1043bitr4d 311 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
106 mnflt 13186 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ ℝ → -∞ < (𝐹𝑧))
1079, 106jccir 521 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)))
108 elioo2 13448 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
10996, 14, 108sylancr 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
110 df-3an 1089 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦))
111109, 110bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦)))
112107, 111mpbirand 706 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) < 𝑦))
113 mnflt 13186 . . . . . . . . . . . 12 ((𝐺𝑧) ∈ ℝ → -∞ < (𝐺𝑧))
11412, 113jccir 521 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)))
115 elioo2 13448 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
11696, 14, 115sylancr 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
117 df-3an 1089 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦))
118116, 117bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦)))
119114, 118mpbirand 706 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (𝐺𝑧) < 𝑦))
120112, 119anbi12d 631 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
12195, 105, 1203bitr4d 311 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
122121pm5.32da 578 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
123 anandi 675 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
124122, 123bitrdi 287 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
125 elpreima 7091 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
12670, 125syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
127 elpreima 7091 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
12873, 127syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
129 elpreima 7091 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
13076, 129syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
131128, 130anbi12d 631 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
132124, 126, 1313bitr4d 311 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦)))))
133 elin 3992 . . . . 5 (𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))))
134132, 133bitr4di 289 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ 𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦)))))
135134eqrdv 2738 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) = ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))))
136 mbfima 25684 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
13784, 3, 136syl2anc 583 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
138 mbfima 25684 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
13987, 1, 138syl2anc 583 . . . . 5 (𝜑 → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
140 inmbl 25596 . . . . 5 (((𝐹 “ (-∞(,)𝑦)) ∈ dom vol ∧ (𝐺 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
141137, 139, 140syl2anc 583 . . . 4 (𝜑 → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
142141adantr 480 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
143135, 142eqeltrd 2844 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) ∈ dom vol)
1447, 93, 143ismbfd 25693 1 (𝜑𝐻 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  cun 3974  cin 3975  ifcif 4548   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  (,)cioo 13407  volcvol 25517  MblFncmbf 25668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673
This theorem is referenced by:  mbfpos  25705
  Copyright terms: Public domain W3C validator