MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmax Structured version   Visualization version   GIF version

Theorem mbfmax 25157
Description: The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfmax.1 (𝜑𝐹:𝐴⟶ℝ)
mbfmax.2 (𝜑𝐹 ∈ MblFn)
mbfmax.3 (𝜑𝐺:𝐴⟶ℝ)
mbfmax.4 (𝜑𝐺 ∈ MblFn)
mbfmax.5 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
Assertion
Ref Expression
mbfmax (𝜑𝐻 ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem mbfmax
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmax.3 . . . . 5 (𝜑𝐺:𝐴⟶ℝ)
21ffvelcdmda 7083 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
3 mbfmax.1 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
43ffvelcdmda 7083 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
52, 4ifcld 4573 . . 3 ((𝜑𝑥𝐴) → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) ∈ ℝ)
6 mbfmax.5 . . 3 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
75, 6fmptd 7110 . 2 (𝜑𝐻:𝐴⟶ℝ)
83adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐹:𝐴⟶ℝ)
98ffvelcdmda 7083 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
109rexrd 11260 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ*)
111adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐺:𝐴⟶ℝ)
1211ffvelcdmda 7083 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
1312rexrd 11260 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ*)
14 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → 𝑦 ∈ ℝ*)
15 xrmaxle 13158 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1610, 13, 14, 15syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1716notbid 317 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
18 ianor 980 . . . . . . . . . 10 (¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦))
1917, 18bitrdi 286 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
20 pnfxr 11264 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
21 elioo2 13361 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2214, 20, 21sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
23 3anan12 1096 . . . . . . . . . . . 12 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2422, 23bitrdi 286 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
25 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
26 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
2725, 26breq12d 5160 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑥) ≤ (𝐺𝑥) ↔ (𝐹𝑧) ≤ (𝐺𝑧)))
2827, 26, 25ifbieq12d 4555 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
29 fvex 6901 . . . . . . . . . . . . . . 15 (𝐺𝑧) ∈ V
30 fvex 6901 . . . . . . . . . . . . . . 15 (𝐹𝑧) ∈ V
3129, 30ifex 4577 . . . . . . . . . . . . . 14 if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ V
3228, 6, 31fvmpt 6995 . . . . . . . . . . . . 13 (𝑧𝐴 → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3332adantl 482 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3433eleq1d 2818 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞)))
3512, 9ifcld 4573 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ)
36 ltpnf 13096 . . . . . . . . . . . . 13 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)
3735, 36jccir 522 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))
3837biantrud 532 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
3924, 34, 383bitr4d 310 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
4035rexrd 11260 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*)
41 xrltnle 11277 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4214, 40, 41syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4339, 42bitrd 278 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
44 elioo2 13361 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
4514, 20, 44sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
46 3anan12 1096 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞)))
4745, 46bitrdi 286 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
48 ltpnf 13096 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → (𝐹𝑧) < +∞)
499, 48jccir 522 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))
5049biantrud 532 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
51 xrltnle 11277 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐹𝑧) ∈ ℝ*) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5214, 10, 51syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5347, 50, 523bitr2d 306 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
54 elioo2 13361 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
5514, 20, 54sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
56 3anan12 1096 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞)))
5755, 56bitrdi 286 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
58 ltpnf 13096 . . . . . . . . . . . . 13 ((𝐺𝑧) ∈ ℝ → (𝐺𝑧) < +∞)
5912, 58jccir 522 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))
6059biantrud 532 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
61 xrltnle 11277 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6214, 13, 61syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6357, 60, 623bitr2d 306 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6453, 63orbi12d 917 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
6519, 43, 643bitr4d 310 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6665pm5.32da 579 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
67 andi 1006 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6866, 67bitrdi 286 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
697ffnd 6715 . . . . . . . 8 (𝜑𝐻 Fn 𝐴)
7069adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → 𝐻 Fn 𝐴)
71 elpreima 7056 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
7270, 71syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
738ffnd 6715 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐹 Fn 𝐴)
74 elpreima 7056 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
7573, 74syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
7611ffnd 6715 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐺 Fn 𝐴)
77 elpreima 7056 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
7876, 77syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
7975, 78orbi12d 917 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
8068, 72, 793bitr4d 310 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞)))))
81 elun 4147 . . . . 5 (𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))))
8280, 81bitr4di 288 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ 𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞)))))
8382eqrdv 2730 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) = ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))))
84 mbfmax.2 . . . . . 6 (𝜑𝐹 ∈ MblFn)
85 mbfima 25138 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
8684, 3, 85syl2anc 584 . . . . 5 (𝜑 → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
87 mbfmax.4 . . . . . 6 (𝜑𝐺 ∈ MblFn)
88 mbfima 25138 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
8987, 1, 88syl2anc 584 . . . . 5 (𝜑 → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
90 unmbl 25045 . . . . 5 (((𝐹 “ (𝑦(,)+∞)) ∈ dom vol ∧ (𝐺 “ (𝑦(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9186, 89, 90syl2anc 584 . . . 4 (𝜑 → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9291adantr 481 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9383, 92eqeltrd 2833 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) ∈ dom vol)
94 xrmaxlt 13156 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
9510, 13, 14, 94syl3anc 1371 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
96 mnfxr 11267 . . . . . . . . . . . 12 -∞ ∈ ℝ*
97 elioo2 13361 . . . . . . . . . . . 12 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
9896, 14, 97sylancr 587 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
99 df-3an 1089 . . . . . . . . . . 11 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
10098, 99bitrdi 286 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
10133eleq1d 2818 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦)))
102 mnflt 13099 . . . . . . . . . . . 12 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
10335, 102jccir 522 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
104103biantrurd 533 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
105100, 101, 1043bitr4d 310 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
106 mnflt 13099 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ ℝ → -∞ < (𝐹𝑧))
1079, 106jccir 522 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)))
108 elioo2 13361 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
10996, 14, 108sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
110 df-3an 1089 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦))
111109, 110bitrdi 286 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦)))
112107, 111mpbirand 705 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) < 𝑦))
113 mnflt 13099 . . . . . . . . . . . 12 ((𝐺𝑧) ∈ ℝ → -∞ < (𝐺𝑧))
11412, 113jccir 522 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)))
115 elioo2 13361 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
11696, 14, 115sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
117 df-3an 1089 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦))
118116, 117bitrdi 286 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦)))
119114, 118mpbirand 705 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (𝐺𝑧) < 𝑦))
120112, 119anbi12d 631 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
12195, 105, 1203bitr4d 310 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
122121pm5.32da 579 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
123 anandi 674 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
124122, 123bitrdi 286 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
125 elpreima 7056 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
12670, 125syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
127 elpreima 7056 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
12873, 127syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
129 elpreima 7056 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
13076, 129syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
131128, 130anbi12d 631 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
132124, 126, 1313bitr4d 310 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦)))))
133 elin 3963 . . . . 5 (𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))))
134132, 133bitr4di 288 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ 𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦)))))
135134eqrdv 2730 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) = ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))))
136 mbfima 25138 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
13784, 3, 136syl2anc 584 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
138 mbfima 25138 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
13987, 1, 138syl2anc 584 . . . . 5 (𝜑 → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
140 inmbl 25050 . . . . 5 (((𝐹 “ (-∞(,)𝑦)) ∈ dom vol ∧ (𝐺 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
141137, 139, 140syl2anc 584 . . . 4 (𝜑 → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
142141adantr 481 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
143135, 142eqeltrd 2833 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) ∈ dom vol)
1447, 93, 143ismbfd 25147 1 (𝜑𝐻 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cun 3945  cin 3946  ifcif 4527   class class class wbr 5147  cmpt 5230  ccnv 5674  dom cdm 5675  cima 5678   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  cr 11105  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243   < clt 11244  cle 11245  (,)cioo 13320  volcvol 24971  MblFncmbf 25122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xadd 13089  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-xmet 20929  df-met 20930  df-ovol 24972  df-vol 24973  df-mbf 25127
This theorem is referenced by:  mbfpos  25159
  Copyright terms: Public domain W3C validator