MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmax Structured version   Visualization version   GIF version

Theorem mbfmax 25685
Description: The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfmax.1 (𝜑𝐹:𝐴⟶ℝ)
mbfmax.2 (𝜑𝐹 ∈ MblFn)
mbfmax.3 (𝜑𝐺:𝐴⟶ℝ)
mbfmax.4 (𝜑𝐺 ∈ MblFn)
mbfmax.5 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
Assertion
Ref Expression
mbfmax (𝜑𝐻 ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem mbfmax
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmax.3 . . . . 5 (𝜑𝐺:𝐴⟶ℝ)
21ffvelcdmda 7103 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
3 mbfmax.1 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
43ffvelcdmda 7103 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
52, 4ifcld 4571 . . 3 ((𝜑𝑥𝐴) → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) ∈ ℝ)
6 mbfmax.5 . . 3 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
75, 6fmptd 7133 . 2 (𝜑𝐻:𝐴⟶ℝ)
83adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐹:𝐴⟶ℝ)
98ffvelcdmda 7103 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
109rexrd 11312 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ*)
111adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐺:𝐴⟶ℝ)
1211ffvelcdmda 7103 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
1312rexrd 11312 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ*)
14 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → 𝑦 ∈ ℝ*)
15 xrmaxle 13226 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1610, 13, 14, 15syl3anc 1372 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1716notbid 318 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
18 ianor 983 . . . . . . . . . 10 (¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦))
1917, 18bitrdi 287 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
20 pnfxr 11316 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
21 elioo2 13429 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2214, 20, 21sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
23 3anan12 1095 . . . . . . . . . . . 12 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2422, 23bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
25 fveq2 6905 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
26 fveq2 6905 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
2725, 26breq12d 5155 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑥) ≤ (𝐺𝑥) ↔ (𝐹𝑧) ≤ (𝐺𝑧)))
2827, 26, 25ifbieq12d 4553 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
29 fvex 6918 . . . . . . . . . . . . . . 15 (𝐺𝑧) ∈ V
30 fvex 6918 . . . . . . . . . . . . . . 15 (𝐹𝑧) ∈ V
3129, 30ifex 4575 . . . . . . . . . . . . . 14 if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ V
3228, 6, 31fvmpt 7015 . . . . . . . . . . . . 13 (𝑧𝐴 → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3332adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3433eleq1d 2825 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞)))
3512, 9ifcld 4571 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ)
36 ltpnf 13163 . . . . . . . . . . . . 13 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)
3735, 36jccir 521 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))
3837biantrud 531 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
3924, 34, 383bitr4d 311 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
4035rexrd 11312 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*)
41 xrltnle 11329 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4214, 40, 41syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4339, 42bitrd 279 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
44 elioo2 13429 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
4514, 20, 44sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
46 3anan12 1095 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞)))
4745, 46bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
48 ltpnf 13163 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → (𝐹𝑧) < +∞)
499, 48jccir 521 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))
5049biantrud 531 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
51 xrltnle 11329 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐹𝑧) ∈ ℝ*) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5214, 10, 51syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5347, 50, 523bitr2d 307 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
54 elioo2 13429 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
5514, 20, 54sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
56 3anan12 1095 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞)))
5755, 56bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
58 ltpnf 13163 . . . . . . . . . . . . 13 ((𝐺𝑧) ∈ ℝ → (𝐺𝑧) < +∞)
5912, 58jccir 521 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))
6059biantrud 531 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
61 xrltnle 11329 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6214, 13, 61syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6357, 60, 623bitr2d 307 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6453, 63orbi12d 918 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
6519, 43, 643bitr4d 311 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6665pm5.32da 579 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
67 andi 1009 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6866, 67bitrdi 287 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
697ffnd 6736 . . . . . . . 8 (𝜑𝐻 Fn 𝐴)
7069adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → 𝐻 Fn 𝐴)
71 elpreima 7077 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
7270, 71syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
738ffnd 6736 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐹 Fn 𝐴)
74 elpreima 7077 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
7573, 74syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
7611ffnd 6736 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐺 Fn 𝐴)
77 elpreima 7077 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
7876, 77syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
7975, 78orbi12d 918 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
8068, 72, 793bitr4d 311 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞)))))
81 elun 4152 . . . . 5 (𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))))
8280, 81bitr4di 289 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ 𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞)))))
8382eqrdv 2734 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) = ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))))
84 mbfmax.2 . . . . . 6 (𝜑𝐹 ∈ MblFn)
85 mbfima 25666 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
8684, 3, 85syl2anc 584 . . . . 5 (𝜑 → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
87 mbfmax.4 . . . . . 6 (𝜑𝐺 ∈ MblFn)
88 mbfima 25666 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
8987, 1, 88syl2anc 584 . . . . 5 (𝜑 → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
90 unmbl 25573 . . . . 5 (((𝐹 “ (𝑦(,)+∞)) ∈ dom vol ∧ (𝐺 “ (𝑦(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9186, 89, 90syl2anc 584 . . . 4 (𝜑 → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9291adantr 480 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9383, 92eqeltrd 2840 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) ∈ dom vol)
94 xrmaxlt 13224 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
9510, 13, 14, 94syl3anc 1372 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
96 mnfxr 11319 . . . . . . . . . . . 12 -∞ ∈ ℝ*
97 elioo2 13429 . . . . . . . . . . . 12 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
9896, 14, 97sylancr 587 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
99 df-3an 1088 . . . . . . . . . . 11 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
10098, 99bitrdi 287 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
10133eleq1d 2825 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦)))
102 mnflt 13166 . . . . . . . . . . . 12 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
10335, 102jccir 521 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
104103biantrurd 532 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
105100, 101, 1043bitr4d 311 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
106 mnflt 13166 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ ℝ → -∞ < (𝐹𝑧))
1079, 106jccir 521 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)))
108 elioo2 13429 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
10996, 14, 108sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
110 df-3an 1088 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦))
111109, 110bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦)))
112107, 111mpbirand 707 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) < 𝑦))
113 mnflt 13166 . . . . . . . . . . . 12 ((𝐺𝑧) ∈ ℝ → -∞ < (𝐺𝑧))
11412, 113jccir 521 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)))
115 elioo2 13429 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
11696, 14, 115sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
117 df-3an 1088 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦))
118116, 117bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦)))
119114, 118mpbirand 707 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (𝐺𝑧) < 𝑦))
120112, 119anbi12d 632 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
12195, 105, 1203bitr4d 311 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
122121pm5.32da 579 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
123 anandi 676 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
124122, 123bitrdi 287 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
125 elpreima 7077 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
12670, 125syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
127 elpreima 7077 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
12873, 127syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
129 elpreima 7077 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
13076, 129syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
131128, 130anbi12d 632 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
132124, 126, 1313bitr4d 311 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦)))))
133 elin 3966 . . . . 5 (𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))))
134132, 133bitr4di 289 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ 𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦)))))
135134eqrdv 2734 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) = ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))))
136 mbfima 25666 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
13784, 3, 136syl2anc 584 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
138 mbfima 25666 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
13987, 1, 138syl2anc 584 . . . . 5 (𝜑 → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
140 inmbl 25578 . . . . 5 (((𝐹 “ (-∞(,)𝑦)) ∈ dom vol ∧ (𝐺 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
141137, 139, 140syl2anc 584 . . . 4 (𝜑 → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
142141adantr 480 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
143135, 142eqeltrd 2840 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) ∈ dom vol)
1447, 93, 143ismbfd 25675 1 (𝜑𝐻 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  cun 3948  cin 3949  ifcif 4524   class class class wbr 5142  cmpt 5224  ccnv 5683  dom cdm 5684  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  cr 11155  +∞cpnf 11293  -∞cmnf 11294  *cxr 11295   < clt 11296  cle 11297  (,)cioo 13388  volcvol 25499  MblFncmbf 25650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xadd 13156  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-xmet 21358  df-met 21359  df-ovol 25500  df-vol 25501  df-mbf 25655
This theorem is referenced by:  mbfpos  25687
  Copyright terms: Public domain W3C validator