Step | Hyp | Ref
| Expression |
1 | | smonoord.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
2 | | eluzfz2 13193 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ ((𝑀 + 1)...𝑁)) |
4 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁))) |
5 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = (𝑀 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑀 + 1))) |
6 | 5 | breq2d 5082 |
. . . . . 6
⊢ (𝑥 = (𝑀 + 1) → ((𝐹‘𝑀) < (𝐹‘𝑥) ↔ (𝐹‘𝑀) < (𝐹‘(𝑀 + 1)))) |
7 | 4, 6 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑥)) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘(𝑀 + 1))))) |
8 | 7 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑥))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘(𝑀 + 1)))))) |
9 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁))) |
10 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝐹‘𝑥) = (𝐹‘𝑛)) |
11 | 10 | breq2d 5082 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑀) < (𝐹‘𝑥) ↔ (𝐹‘𝑀) < (𝐹‘𝑛))) |
12 | 9, 11 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑥)) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑛)))) |
13 | 12 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑥))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑛))))) |
14 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) |
15 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
16 | 15 | breq2d 5082 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑀) < (𝐹‘𝑥) ↔ (𝐹‘𝑀) < (𝐹‘(𝑛 + 1)))) |
17 | 14, 16 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑥)) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘(𝑛 + 1))))) |
18 | 17 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘(𝑛 + 1)))))) |
19 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁))) |
20 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝐹‘𝑥) = (𝐹‘𝑁)) |
21 | 20 | breq2d 5082 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝐹‘𝑀) < (𝐹‘𝑥) ↔ (𝐹‘𝑀) < (𝐹‘𝑁))) |
22 | 19, 21 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑥)) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑁)))) |
23 | 22 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑥))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑁))))) |
24 | | smonoord.0 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
25 | | eluzp1m1 12537 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
26 | 24, 1, 25 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
27 | | eluzfz1 13192 |
. . . . . . . 8
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...(𝑁 − 1))) |
28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...(𝑁 − 1))) |
29 | | smonoord.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) < (𝐹‘(𝑘 + 1))) |
30 | 29 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘𝑘) < (𝐹‘(𝑘 + 1))) |
31 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
32 | | fvoveq1 7278 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑀 + 1))) |
33 | 31, 32 | breq12d 5083 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹‘𝑀) < (𝐹‘(𝑀 + 1)))) |
34 | 33 | rspcv 3547 |
. . . . . . 7
⊢ (𝑀 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹‘𝑀) < (𝐹‘(𝑀 + 1)))) |
35 | 28, 30, 34 | sylc 65 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘(𝑀 + 1))) |
36 | 35 | a1d 25 |
. . . . 5
⊢ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘(𝑀 + 1)))) |
37 | 36 | a1i 11 |
. . . 4
⊢ ((𝑀 + 1) ∈ ℤ →
(𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘(𝑀 + 1))))) |
38 | | peano2fzr 13198 |
. . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁)) |
39 | 38 | adantll 710 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁)) |
40 | 39 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁))) |
41 | 40 | imim1d 82 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑛)) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑛)))) |
42 | | peano2uzr 12572 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
43 | 42 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (𝑛 ∈
(ℤ≥‘(𝑀 + 1)) → 𝑛 ∈ (ℤ≥‘𝑀))) |
44 | 43, 24 | syl11 33 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘(𝑀 + 1)) → (𝜑 → 𝑛 ∈ (ℤ≥‘𝑀))) |
45 | 44 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑 → 𝑛 ∈ (ℤ≥‘𝑀))) |
46 | 45 | impcom 407 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
47 | | eluzelz 12521 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘(𝑀 + 1)) → 𝑛 ∈ ℤ) |
48 | 47 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ℤ) |
49 | 48 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ℤ) |
50 | | elfzuz3 13182 |
. . . . . . . . . 10
⊢ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
51 | 50 | ad2antll 725 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
52 | | eluzp1m1 12537 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑛)) |
53 | 49, 51, 52 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑁 − 1) ∈
(ℤ≥‘𝑛)) |
54 | | elfzuzb 13179 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑛))) |
55 | 46, 53, 54 | sylanbrc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1))) |
56 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘𝑘) < (𝐹‘(𝑘 + 1))) |
57 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
58 | | fvoveq1 7278 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
59 | 57, 58 | breq12d 5083 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) |
60 | 59 | rspcv 3547 |
. . . . . . 7
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) |
61 | 55, 56, 60 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘𝑛) < (𝐹‘(𝑛 + 1))) |
62 | | zre 12253 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
63 | 62 | lep1d 11836 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ≤ (𝑀 + 1)) |
64 | 24, 63 | jccir 521 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1))) |
65 | | eluzuzle 12520 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)) → (𝑁 ∈ (ℤ≥‘(𝑀 + 1)) → 𝑁 ∈ (ℤ≥‘𝑀))) |
66 | 64, 1, 65 | sylc 65 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
67 | | eluzfz1 13192 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
68 | 66, 67 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
69 | | smonoord.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
70 | 69 | ralrimiva 3107 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
71 | 31 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑀) ∈ ℝ)) |
72 | 71 | rspcv 3547 |
. . . . . . . . 9
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (𝐹‘𝑀) ∈ ℝ)) |
73 | 68, 70, 72 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
74 | 73 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘𝑀) ∈ ℝ) |
75 | | fzp1ss 13236 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
76 | 24, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
77 | 76 | sseld 3916 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))) |
78 | 77 | com12 32 |
. . . . . . . . . . 11
⊢ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁))) |
79 | 78 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁))) |
80 | 79 | impcom 407 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
81 | | peano2fzr 13198 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) |
82 | 46, 80, 81 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...𝑁)) |
83 | 70 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
84 | 57 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑛) ∈ ℝ)) |
85 | 84 | rspcv 3547 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (𝐹‘𝑛) ∈ ℝ)) |
86 | 82, 83, 85 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘𝑛) ∈ ℝ) |
87 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
88 | 87 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ)) |
89 | 88 | rspcv 3547 |
. . . . . . . 8
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (𝐹‘(𝑛 + 1)) ∈ ℝ)) |
90 | 80, 83, 89 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ) |
91 | | lttr 10982 |
. . . . . . 7
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ (𝐹‘𝑛) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝐹‘𝑀) < (𝐹‘𝑛) ∧ (𝐹‘𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹‘𝑀) < (𝐹‘(𝑛 + 1)))) |
92 | 74, 86, 90, 91 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((𝐹‘𝑀) < (𝐹‘𝑛) ∧ (𝐹‘𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹‘𝑀) < (𝐹‘(𝑛 + 1)))) |
93 | 61, 92 | mpan2d 690 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝐹‘𝑀) < (𝐹‘𝑛) → (𝐹‘𝑀) < (𝐹‘(𝑛 + 1)))) |
94 | 41, 93 | animpimp2impd 842 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘(𝑛 + 1)))))) |
95 | 8, 13, 18, 23, 37, 94 | uzind4 12575 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑁)))) |
96 | 1, 95 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹‘𝑀) < (𝐹‘𝑁))) |
97 | 3, 96 | mpd 15 |
1
⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)) |