Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smonoord Structured version   Visualization version   GIF version

Theorem smonoord 45553
Description: Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord 13938 (except that the case 𝑀 = 𝑁 must be excluded). Duplicate of monoords 43521? (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
smonoord.0 (𝜑𝑀 ∈ ℤ)
smonoord.1 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
smonoord.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
smonoord.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
smonoord (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem smonoord
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smonoord.1 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
2 eluzfz2 13449 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ ((𝑀 + 1)...𝑁))
4 eleq1 2825 . . . . . 6 (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁)))
5 fveq2 6842 . . . . . . 7 (𝑥 = (𝑀 + 1) → (𝐹𝑥) = (𝐹‘(𝑀 + 1)))
65breq2d 5117 . . . . . 6 (𝑥 = (𝑀 + 1) → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
74, 6imbi12d 344 . . . . 5 (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))))
87imbi2d 340 . . . 4 (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))))
9 eleq1 2825 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁)))
10 fveq2 6842 . . . . . . 7 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1110breq2d 5117 . . . . . 6 (𝑥 = 𝑛 → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹𝑛)))
129, 11imbi12d 344 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))))
1312imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)))))
14 eleq1 2825 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)))
15 fveq2 6842 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
1615breq2d 5117 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
1714, 16imbi12d 344 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1)))))
1817imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))))
19 eleq1 2825 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁)))
20 fveq2 6842 . . . . . . 7 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2120breq2d 5117 . . . . . 6 (𝑥 = 𝑁 → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹𝑁)))
2219, 21imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁))))
2322imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁)))))
24 smonoord.0 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
25 eluzp1m1 12789 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
2624, 1, 25syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ (ℤ𝑀))
27 eluzfz1 13448 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑁 − 1)))
2826, 27syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...(𝑁 − 1)))
29 smonoord.3 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
3029ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)))
31 fveq2 6842 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
32 fvoveq1 7380 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑀 + 1)))
3331, 32breq12d 5118 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3433rspcv 3577 . . . . . . 7 (𝑀 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3528, 30, 34sylc 65 . . . . . 6 (𝜑 → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))
3635a1d 25 . . . . 5 (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3736a1i 11 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))))
38 peano2fzr 13454 . . . . . . . 8 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
3938adantll 712 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
4039ex 413 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁)))
4140imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))))
42 peano2uzr 12828 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 1))) → 𝑛 ∈ (ℤ𝑀))
4342ex 413 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ‘(𝑀 + 1)) → 𝑛 ∈ (ℤ𝑀)))
4443, 24syl11 33 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → (𝜑𝑛 ∈ (ℤ𝑀)))
4544adantr 481 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑𝑛 ∈ (ℤ𝑀)))
4645impcom 408 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ𝑀))
47 eluzelz 12773 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → 𝑛 ∈ ℤ)
4847adantr 481 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ℤ)
4948adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ℤ)
50 elfzuz3 13438 . . . . . . . . . 10 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
5150ad2antll 727 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
52 eluzp1m1 12789 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
5349, 51, 52syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑁 − 1) ∈ (ℤ𝑛))
54 elfzuzb 13435 . . . . . . . 8 (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑛)))
5546, 53, 54sylanbrc 583 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1)))
5630adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)))
57 fveq2 6842 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
58 fvoveq1 7380 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
5957, 58breq12d 5118 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
6059rspcv 3577 . . . . . . 7 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
6155, 56, 60sylc 65 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑛) < (𝐹‘(𝑛 + 1)))
62 zre 12503 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6362lep1d 12086 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ≤ (𝑀 + 1))
6424, 63jccir 522 . . . . . . . . . . 11 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)))
65 eluzuzle 12772 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ (ℤ𝑀)))
6664, 1, 65sylc 65 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
67 eluzfz1 13448 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
6866, 67syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (𝑀...𝑁))
69 smonoord.2 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
7069ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
7131eleq1d 2822 . . . . . . . . . 10 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
7271rspcv 3577 . . . . . . . . 9 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑀) ∈ ℝ))
7368, 70, 72sylc 65 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℝ)
7473adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑀) ∈ ℝ)
75 fzp1ss 13492 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7624, 75syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7776sseld 3943 . . . . . . . . . . . 12 (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)))
7877com12 32 . . . . . . . . . . 11 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁)))
7978adantl 482 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁)))
8079impcom 408 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
81 peano2fzr 13454 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
8246, 80, 81syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
8370adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
8457eleq1d 2822 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
8584rspcv 3577 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑛) ∈ ℝ))
8682, 83, 85sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑛) ∈ ℝ)
87 fveq2 6842 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
8887eleq1d 2822 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
8988rspcv 3577 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹‘(𝑛 + 1)) ∈ ℝ))
9080, 83, 89sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
91 lttr 11231 . . . . . . 7 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝐹𝑀) < (𝐹𝑛) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9274, 86, 90, 91syl3anc 1371 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((𝐹𝑀) < (𝐹𝑛) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9361, 92mpan2d 692 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝐹𝑀) < (𝐹𝑛) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9441, 93animpimp2impd 844 . . . 4 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))))
958, 13, 18, 23, 37, 94uzind4 12831 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁))))
961, 95mpcom 38 . 2 (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁)))
973, 96mpd 15 1 (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wss 3910   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cz 12499  cuz 12763  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  iccpartiltu  45604  iccpartigtl  45605  iccpartgt  45609
  Copyright terms: Public domain W3C validator