Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smonoord Structured version   Visualization version   GIF version

Theorem smonoord 43883
 Description: Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord 13396 (except that the case 𝑀 = 𝑁 must be excluded). Duplicate of monoords 41924? (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
smonoord.0 (𝜑𝑀 ∈ ℤ)
smonoord.1 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
smonoord.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
smonoord.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
smonoord (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem smonoord
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smonoord.1 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
2 eluzfz2 12910 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ ((𝑀 + 1)...𝑁))
4 eleq1 2877 . . . . . 6 (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁)))
5 fveq2 6645 . . . . . . 7 (𝑥 = (𝑀 + 1) → (𝐹𝑥) = (𝐹‘(𝑀 + 1)))
65breq2d 5042 . . . . . 6 (𝑥 = (𝑀 + 1) → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
74, 6imbi12d 348 . . . . 5 (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))))
87imbi2d 344 . . . 4 (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))))
9 eleq1 2877 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁)))
10 fveq2 6645 . . . . . . 7 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1110breq2d 5042 . . . . . 6 (𝑥 = 𝑛 → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹𝑛)))
129, 11imbi12d 348 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))))
1312imbi2d 344 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)))))
14 eleq1 2877 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)))
15 fveq2 6645 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
1615breq2d 5042 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
1714, 16imbi12d 348 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1)))))
1817imbi2d 344 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))))
19 eleq1 2877 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁)))
20 fveq2 6645 . . . . . . 7 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2120breq2d 5042 . . . . . 6 (𝑥 = 𝑁 → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹𝑁)))
2219, 21imbi12d 348 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁))))
2322imbi2d 344 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁)))))
24 smonoord.0 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
25 eluzp1m1 12256 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
2624, 1, 25syl2anc 587 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ (ℤ𝑀))
27 eluzfz1 12909 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑁 − 1)))
2826, 27syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...(𝑁 − 1)))
29 smonoord.3 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
3029ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)))
31 fveq2 6645 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
32 fvoveq1 7158 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑀 + 1)))
3331, 32breq12d 5043 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3433rspcv 3566 . . . . . . 7 (𝑀 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3528, 30, 34sylc 65 . . . . . 6 (𝜑 → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))
3635a1d 25 . . . . 5 (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3736a1i 11 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))))
38 peano2fzr 12915 . . . . . . . 8 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
3938adantll 713 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
4039ex 416 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁)))
4140imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))))
42 peano2uzr 12291 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 1))) → 𝑛 ∈ (ℤ𝑀))
4342ex 416 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ‘(𝑀 + 1)) → 𝑛 ∈ (ℤ𝑀)))
4443, 24syl11 33 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → (𝜑𝑛 ∈ (ℤ𝑀)))
4544adantr 484 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑𝑛 ∈ (ℤ𝑀)))
4645impcom 411 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ𝑀))
47 eluzelz 12241 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → 𝑛 ∈ ℤ)
4847adantr 484 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ℤ)
4948adantl 485 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ℤ)
50 elfzuz3 12899 . . . . . . . . . 10 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
5150ad2antll 728 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
52 eluzp1m1 12256 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
5349, 51, 52syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑁 − 1) ∈ (ℤ𝑛))
54 elfzuzb 12896 . . . . . . . 8 (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑛)))
5546, 53, 54sylanbrc 586 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1)))
5630adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)))
57 fveq2 6645 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
58 fvoveq1 7158 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
5957, 58breq12d 5043 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
6059rspcv 3566 . . . . . . 7 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
6155, 56, 60sylc 65 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑛) < (𝐹‘(𝑛 + 1)))
62 zre 11973 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6362lep1d 11560 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ≤ (𝑀 + 1))
6424, 63jccir 525 . . . . . . . . . . 11 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)))
65 eluzuzle 12240 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ (ℤ𝑀)))
6664, 1, 65sylc 65 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
67 eluzfz1 12909 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
6866, 67syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (𝑀...𝑁))
69 smonoord.2 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
7069ralrimiva 3149 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
7131eleq1d 2874 . . . . . . . . . 10 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
7271rspcv 3566 . . . . . . . . 9 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑀) ∈ ℝ))
7368, 70, 72sylc 65 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℝ)
7473adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑀) ∈ ℝ)
75 fzp1ss 12953 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7624, 75syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7776sseld 3914 . . . . . . . . . . . 12 (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)))
7877com12 32 . . . . . . . . . . 11 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁)))
7978adantl 485 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁)))
8079impcom 411 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
81 peano2fzr 12915 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
8246, 80, 81syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
8370adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
8457eleq1d 2874 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
8584rspcv 3566 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑛) ∈ ℝ))
8682, 83, 85sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑛) ∈ ℝ)
87 fveq2 6645 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
8887eleq1d 2874 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
8988rspcv 3566 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹‘(𝑛 + 1)) ∈ ℝ))
9080, 83, 89sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
91 lttr 10706 . . . . . . 7 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝐹𝑀) < (𝐹𝑛) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9274, 86, 90, 91syl3anc 1368 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((𝐹𝑀) < (𝐹𝑛) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9361, 92mpan2d 693 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝐹𝑀) < (𝐹𝑛) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9441, 93animpimp2impd 843 . . . 4 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))))
958, 13, 18, 23, 37, 94uzind4 12294 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁))))
961, 95mpcom 38 . 2 (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁)))
973, 96mpd 15 1 (𝜑 → (𝐹𝑀) < (𝐹𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106   ⊆ wss 3881   class class class wbr 5030  ‘cfv 6324  (class class class)co 7135  ℝcr 10525  1c1 10527   + caddc 10529   < clt 10664   ≤ cle 10665   − cmin 10859  ℤcz 11969  ℤ≥cuz 12231  ...cfz 12885 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886 This theorem is referenced by:  iccpartiltu  43934  iccpartigtl  43935  iccpartgt  43939
 Copyright terms: Public domain W3C validator