Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smonoord Structured version   Visualization version   GIF version

Theorem smonoord 47245
Description: Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord 14083 (except that the case 𝑀 = 𝑁 must be excluded). Duplicate of monoords 45212? (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
smonoord.0 (𝜑𝑀 ∈ ℤ)
smonoord.1 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
smonoord.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
smonoord.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
smonoord (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem smonoord
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smonoord.1 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
2 eluzfz2 13592 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ ((𝑀 + 1)...𝑁))
4 eleq1 2832 . . . . . 6 (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁)))
5 fveq2 6920 . . . . . . 7 (𝑥 = (𝑀 + 1) → (𝐹𝑥) = (𝐹‘(𝑀 + 1)))
65breq2d 5178 . . . . . 6 (𝑥 = (𝑀 + 1) → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
74, 6imbi12d 344 . . . . 5 (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))))
87imbi2d 340 . . . 4 (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))))
9 eleq1 2832 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁)))
10 fveq2 6920 . . . . . . 7 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1110breq2d 5178 . . . . . 6 (𝑥 = 𝑛 → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹𝑛)))
129, 11imbi12d 344 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))))
1312imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)))))
14 eleq1 2832 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)))
15 fveq2 6920 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
1615breq2d 5178 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
1714, 16imbi12d 344 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1)))))
1817imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))))
19 eleq1 2832 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁)))
20 fveq2 6920 . . . . . . 7 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2120breq2d 5178 . . . . . 6 (𝑥 = 𝑁 → ((𝐹𝑀) < (𝐹𝑥) ↔ (𝐹𝑀) < (𝐹𝑁)))
2219, 21imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥)) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁))))
2322imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑥))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁)))))
24 smonoord.0 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
25 eluzp1m1 12929 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
2624, 1, 25syl2anc 583 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ (ℤ𝑀))
27 eluzfz1 13591 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑁 − 1)))
2826, 27syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...(𝑁 − 1)))
29 smonoord.3 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
3029ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)))
31 fveq2 6920 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
32 fvoveq1 7471 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑀 + 1)))
3331, 32breq12d 5179 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3433rspcv 3631 . . . . . . 7 (𝑀 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3528, 30, 34sylc 65 . . . . . 6 (𝜑 → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))
3635a1d 25 . . . . 5 (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1))))
3736a1i 11 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑀 + 1)))))
38 peano2fzr 13597 . . . . . . . 8 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
3938adantll 713 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
4039ex 412 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁)))
4140imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛)) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))))
42 peano2uzr 12968 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 1))) → 𝑛 ∈ (ℤ𝑀))
4342ex 412 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ‘(𝑀 + 1)) → 𝑛 ∈ (ℤ𝑀)))
4443, 24syl11 33 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → (𝜑𝑛 ∈ (ℤ𝑀)))
4544adantr 480 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑𝑛 ∈ (ℤ𝑀)))
4645impcom 407 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ𝑀))
47 eluzelz 12913 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → 𝑛 ∈ ℤ)
4847adantr 480 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ℤ)
4948adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ℤ)
50 elfzuz3 13581 . . . . . . . . . 10 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
5150ad2antll 728 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
52 eluzp1m1 12929 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
5349, 51, 52syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑁 − 1) ∈ (ℤ𝑛))
54 elfzuzb 13578 . . . . . . . 8 (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑛)))
5546, 53, 54sylanbrc 582 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1)))
5630adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)))
57 fveq2 6920 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
58 fvoveq1 7471 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
5957, 58breq12d 5179 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
6059rspcv 3631 . . . . . . 7 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) < (𝐹‘(𝑘 + 1)) → (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
6155, 56, 60sylc 65 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑛) < (𝐹‘(𝑛 + 1)))
62 zre 12643 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6362lep1d 12226 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ≤ (𝑀 + 1))
6424, 63jccir 521 . . . . . . . . . . 11 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)))
65 eluzuzle 12912 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ (ℤ𝑀)))
6664, 1, 65sylc 65 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
67 eluzfz1 13591 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
6866, 67syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (𝑀...𝑁))
69 smonoord.2 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
7069ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
7131eleq1d 2829 . . . . . . . . . 10 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
7271rspcv 3631 . . . . . . . . 9 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑀) ∈ ℝ))
7368, 70, 72sylc 65 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℝ)
7473adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑀) ∈ ℝ)
75 fzp1ss 13635 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7624, 75syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7776sseld 4007 . . . . . . . . . . . 12 (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)))
7877com12 32 . . . . . . . . . . 11 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁)))
7978adantl 481 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝜑 → (𝑛 + 1) ∈ (𝑀...𝑁)))
8079impcom 407 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
81 peano2fzr 13597 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
8246, 80, 81syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
8370adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
8457eleq1d 2829 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
8584rspcv 3631 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑛) ∈ ℝ))
8682, 83, 85sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹𝑛) ∈ ℝ)
87 fveq2 6920 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
8887eleq1d 2829 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
8988rspcv 3631 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹‘(𝑛 + 1)) ∈ ℝ))
9080, 83, 89sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
91 lttr 11366 . . . . . . 7 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝐹𝑀) < (𝐹𝑛) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9274, 86, 90, 91syl3anc 1371 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((𝐹𝑀) < (𝐹𝑛) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9361, 92mpan2d 693 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝐹𝑀) < (𝐹𝑛) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))
9441, 93animpimp2impd 845 . . . 4 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑛))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹‘(𝑛 + 1))))))
958, 13, 18, 23, 37, 94uzind4 12971 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁))))
961, 95mpcom 38 . 2 (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (𝐹𝑀) < (𝐹𝑁)))
973, 96mpd 15 1 (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cz 12639  cuz 12903  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  iccpartiltu  47296  iccpartigtl  47297  iccpartgt  47301
  Copyright terms: Public domain W3C validator