MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklnwwlkln2lem Structured version   Visualization version   GIF version

Theorem wlklnwwlkln2lem 29401
Description: Lemma for wlklnwwlkln2 29402 and wlklnwwlklnupgr2 29404. Formerly part of proof for wlklnwwlkln2 29402. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Hypothesis
Ref Expression
wlklnwwlkln2lem.1 (πœ‘ β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
Assertion
Ref Expression
wlklnwwlkln2lem (πœ‘ β†’ (𝑃 ∈ (𝑁 WWalksN 𝐺) β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁)))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑁   𝑃,𝑓   πœ‘,𝑓

Proof of Theorem wlklnwwlkln2lem
StepHypRef Expression
1 eqid 2730 . . . 4 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
21wwlknbp 29361 . . 3 (𝑃 ∈ (𝑁 WWalksN 𝐺) β†’ (𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)))
3 iswwlksn 29357 . . . . . 6 (𝑁 ∈ β„•0 β†’ (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))))
43adantr 479 . . . . 5 ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))))
5 lencl 14489 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtxβ€˜πΊ) β†’ (β™―β€˜π‘ƒ) ∈ β„•0)
65nn0cnd 12540 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtxβ€˜πΊ) β†’ (β™―β€˜π‘ƒ) ∈ β„‚)
76adantl 480 . . . . . . . . . . . 12 ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (β™―β€˜π‘ƒ) ∈ β„‚)
8 1cnd 11215 . . . . . . . . . . . 12 ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ 1 ∈ β„‚)
9 nn0cn 12488 . . . . . . . . . . . . 13 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„‚)
109adantr 479 . . . . . . . . . . . 12 ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ 𝑁 ∈ β„‚)
117, 8, 10subadd2d 11596 . . . . . . . . . . 11 ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁 ↔ (𝑁 + 1) = (β™―β€˜π‘ƒ)))
12 eqcom 2737 . . . . . . . . . . 11 ((𝑁 + 1) = (β™―β€˜π‘ƒ) ↔ (β™―β€˜π‘ƒ) = (𝑁 + 1))
1311, 12bitr2di 287 . . . . . . . . . 10 ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ ((β™―β€˜π‘ƒ) = (𝑁 + 1) ↔ ((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁))
1413biimpcd 248 . . . . . . . . 9 ((β™―β€˜π‘ƒ) = (𝑁 + 1) β†’ ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁))
1514adantl 480 . . . . . . . 8 ((𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1)) β†’ ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁))
1615impcom 406 . . . . . . 7 (((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁)
17 wlklnwwlkln2lem.1 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
1817com12 32 . . . . . . . . . . . . 13 (𝑃 ∈ (WWalksβ€˜πΊ) β†’ (πœ‘ β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
1918adantr 479 . . . . . . . . . . . 12 ((𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1)) β†’ (πœ‘ β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
2019adantl 480 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) β†’ (πœ‘ β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
2120imp 405 . . . . . . . . . 10 ((((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) ∧ πœ‘) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃)
22 simpr 483 . . . . . . . . . . . . 13 (((((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) ∧ πœ‘) ∧ 𝑓(Walksβ€˜πΊ)𝑃) β†’ 𝑓(Walksβ€˜πΊ)𝑃)
23 wlklenvm1 29144 . . . . . . . . . . . . 13 (𝑓(Walksβ€˜πΊ)𝑃 β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1))
2422, 23jccir 520 . . . . . . . . . . . 12 (((((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) ∧ πœ‘) ∧ 𝑓(Walksβ€˜πΊ)𝑃) β†’ (𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1)))
2524ex 411 . . . . . . . . . . 11 ((((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) ∧ πœ‘) β†’ (𝑓(Walksβ€˜πΊ)𝑃 β†’ (𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1))))
2625eximdv 1918 . . . . . . . . . 10 ((((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) ∧ πœ‘) β†’ (βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃 β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1))))
2721, 26mpd 15 . . . . . . . . 9 ((((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) ∧ πœ‘) β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1)))
28 eqeq2 2742 . . . . . . . . . . 11 (((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁 β†’ ((β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1) ↔ (β™―β€˜π‘“) = 𝑁))
2928anbi2d 627 . . . . . . . . . 10 (((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁 β†’ ((𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1)) ↔ (𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁)))
3029exbidv 1922 . . . . . . . . 9 (((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁 β†’ (βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1)) ↔ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁)))
3127, 30imbitrid 243 . . . . . . . 8 (((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁 β†’ ((((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) ∧ πœ‘) β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁)))
3231expd 414 . . . . . . 7 (((β™―β€˜π‘ƒ) βˆ’ 1) = 𝑁 β†’ (((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) β†’ (πœ‘ β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁))))
3316, 32mpcom 38 . . . . . 6 (((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ (𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1))) β†’ (πœ‘ β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁)))
3433ex 411 . . . . 5 ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ ((𝑃 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘ƒ) = (𝑁 + 1)) β†’ (πœ‘ β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁))))
354, 34sylbid 239 . . . 4 ((𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝑃 ∈ (𝑁 WWalksN 𝐺) β†’ (πœ‘ β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁))))
36353adant1 1128 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝑃 ∈ (𝑁 WWalksN 𝐺) β†’ (πœ‘ β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁))))
372, 36mpcom 38 . 2 (𝑃 ∈ (𝑁 WWalksN 𝐺) β†’ (πœ‘ β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁)))
3837com12 32 1 (πœ‘ β†’ (𝑃 ∈ (𝑁 WWalksN 𝐺) β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜π‘“) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  Vcvv 3472   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7413  β„‚cc 11112  1c1 11115   + caddc 11117   βˆ’ cmin 11450  β„•0cn0 12478  β™―chash 14296  Word cword 14470  Vtxcvtx 28521  Walkscwlks 29118  WWalkscwwlks 29344   WWalksN cwwlksn 29345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-n0 12479  df-z 12565  df-uz 12829  df-fz 13491  df-fzo 13634  df-hash 14297  df-word 14471  df-wlks 29121  df-wwlks 29349  df-wwlksn 29350
This theorem is referenced by:  wlklnwwlkln2  29402  wlklnwwlklnupgr2  29404
  Copyright terms: Public domain W3C validator