MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklnwwlkln2lem Structured version   Visualization version   GIF version

Theorem wlklnwwlkln2lem 29855
Description: Lemma for wlklnwwlkln2 29856 and wlklnwwlklnupgr2 29858. Formerly part of proof for wlklnwwlkln2 29856. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Hypothesis
Ref Expression
wlklnwwlkln2lem.1 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Assertion
Ref Expression
wlklnwwlkln2lem (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑁   𝑃,𝑓   𝜑,𝑓

Proof of Theorem wlklnwwlkln2lem
StepHypRef Expression
1 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlknbp 29815 . . 3 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)))
3 iswwlksn 29811 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
43adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
5 lencl 14435 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℕ0)
65nn0cnd 12439 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℂ)
76adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (♯‘𝑃) ∈ ℂ)
8 1cnd 11102 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 1 ∈ ℂ)
9 nn0cn 12386 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
109adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 𝑁 ∈ ℂ)
117, 8, 10subadd2d 11486 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (((♯‘𝑃) − 1) = 𝑁 ↔ (𝑁 + 1) = (♯‘𝑃)))
12 eqcom 2738 . . . . . . . . . . 11 ((𝑁 + 1) = (♯‘𝑃) ↔ (♯‘𝑃) = (𝑁 + 1))
1311, 12bitr2di 288 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) = (𝑁 + 1) ↔ ((♯‘𝑃) − 1) = 𝑁))
1413biimpcd 249 . . . . . . . . 9 ((♯‘𝑃) = (𝑁 + 1) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) − 1) = 𝑁))
1514adantl 481 . . . . . . . 8 ((𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) − 1) = 𝑁))
1615impcom 407 . . . . . . 7 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → ((♯‘𝑃) − 1) = 𝑁)
17 wlklnwwlkln2lem.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1817com12 32 . . . . . . . . . . . . 13 (𝑃 ∈ (WWalks‘𝐺) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1918adantr 480 . . . . . . . . . . . 12 ((𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2019adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2120imp 406 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
22 simpr 484 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → 𝑓(Walks‘𝐺)𝑃)
23 wlklenvm1 29595 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑃 → (♯‘𝑓) = ((♯‘𝑃) − 1))
2422, 23jccir 521 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → (𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)))
2524ex 412 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (𝑓(Walks‘𝐺)𝑃 → (𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1))))
2625eximdv 1918 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1))))
2721, 26mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)))
28 eqeq2 2743 . . . . . . . . . . 11 (((♯‘𝑃) − 1) = 𝑁 → ((♯‘𝑓) = ((♯‘𝑃) − 1) ↔ (♯‘𝑓) = 𝑁))
2928anbi2d 630 . . . . . . . . . 10 (((♯‘𝑃) − 1) = 𝑁 → ((𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)) ↔ (𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3029exbidv 1922 . . . . . . . . 9 (((♯‘𝑃) − 1) = 𝑁 → (∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3127, 30imbitrid 244 . . . . . . . 8 (((♯‘𝑃) − 1) = 𝑁 → ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3231expd 415 . . . . . . 7 (((♯‘𝑃) − 1) = 𝑁 → (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
3316, 32mpcom 38 . . . . . 6 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3433ex 412 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
354, 34sylbid 240 . . . 4 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
36353adant1 1130 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
372, 36mpcom 38 . 2 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3837com12 32 1 (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  1c1 11002   + caddc 11004  cmin 11339  0cn0 12376  chash 14232  Word cword 14415  Vtxcvtx 28969  Walkscwlks 29570  WWalkscwwlks 29798   WWalksN cwwlksn 29799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-hash 14233  df-word 14416  df-wlks 29573  df-wwlks 29803  df-wwlksn 29804
This theorem is referenced by:  wlklnwwlkln2  29856  wlklnwwlklnupgr2  29858
  Copyright terms: Public domain W3C validator