MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklnwwlkln2lem Structured version   Visualization version   GIF version

Theorem wlklnwwlkln2lem 28255
Description: Lemma for wlklnwwlkln2 28256 and wlklnwwlklnupgr2 28258. Formerly part of proof for wlklnwwlkln2 28256. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Hypothesis
Ref Expression
wlklnwwlkln2lem.1 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Assertion
Ref Expression
wlklnwwlkln2lem (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑁   𝑃,𝑓   𝜑,𝑓

Proof of Theorem wlklnwwlkln2lem
StepHypRef Expression
1 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlknbp 28215 . . 3 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)))
3 iswwlksn 28211 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
43adantr 481 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
5 lencl 14246 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℕ0)
65nn0cnd 12305 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℂ)
76adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (♯‘𝑃) ∈ ℂ)
8 1cnd 10980 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 1 ∈ ℂ)
9 nn0cn 12253 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
109adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 𝑁 ∈ ℂ)
117, 8, 10subadd2d 11361 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (((♯‘𝑃) − 1) = 𝑁 ↔ (𝑁 + 1) = (♯‘𝑃)))
12 eqcom 2745 . . . . . . . . . . 11 ((𝑁 + 1) = (♯‘𝑃) ↔ (♯‘𝑃) = (𝑁 + 1))
1311, 12bitr2di 288 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) = (𝑁 + 1) ↔ ((♯‘𝑃) − 1) = 𝑁))
1413biimpcd 248 . . . . . . . . 9 ((♯‘𝑃) = (𝑁 + 1) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) − 1) = 𝑁))
1514adantl 482 . . . . . . . 8 ((𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) − 1) = 𝑁))
1615impcom 408 . . . . . . 7 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → ((♯‘𝑃) − 1) = 𝑁)
17 wlklnwwlkln2lem.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1817com12 32 . . . . . . . . . . . . 13 (𝑃 ∈ (WWalks‘𝐺) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1918adantr 481 . . . . . . . . . . . 12 ((𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2019adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2120imp 407 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
22 simpr 485 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → 𝑓(Walks‘𝐺)𝑃)
23 wlklenvm1 27998 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑃 → (♯‘𝑓) = ((♯‘𝑃) − 1))
2422, 23jccir 522 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → (𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)))
2524ex 413 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (𝑓(Walks‘𝐺)𝑃 → (𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1))))
2625eximdv 1920 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1))))
2721, 26mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)))
28 eqeq2 2750 . . . . . . . . . . 11 (((♯‘𝑃) − 1) = 𝑁 → ((♯‘𝑓) = ((♯‘𝑃) − 1) ↔ (♯‘𝑓) = 𝑁))
2928anbi2d 629 . . . . . . . . . 10 (((♯‘𝑃) − 1) = 𝑁 → ((𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)) ↔ (𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3029exbidv 1924 . . . . . . . . 9 (((♯‘𝑃) − 1) = 𝑁 → (∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3127, 30syl5ib 243 . . . . . . . 8 (((♯‘𝑃) − 1) = 𝑁 → ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3231expd 416 . . . . . . 7 (((♯‘𝑃) − 1) = 𝑁 → (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
3316, 32mpcom 38 . . . . . 6 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3433ex 413 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
354, 34sylbid 239 . . . 4 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
36353adant1 1129 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
372, 36mpcom 38 . 2 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3837com12 32 1 (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  Vcvv 3429   class class class wbr 5073  cfv 6426  (class class class)co 7267  cc 10879  1c1 10882   + caddc 10884  cmin 11215  0cn0 12243  chash 14054  Word cword 14227  Vtxcvtx 27376  Walkscwlks 27973  WWalkscwwlks 28198   WWalksN cwwlksn 28199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-n0 12244  df-z 12330  df-uz 12593  df-fz 13250  df-fzo 13393  df-hash 14055  df-word 14228  df-wlks 27976  df-wwlks 28203  df-wwlksn 28204
This theorem is referenced by:  wlklnwwlkln2  28256  wlklnwwlklnupgr2  28258
  Copyright terms: Public domain W3C validator