MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklnwwlkln2lem Structured version   Visualization version   GIF version

Theorem wlklnwwlkln2lem 29864
Description: Lemma for wlklnwwlkln2 29865 and wlklnwwlklnupgr2 29867. Formerly part of proof for wlklnwwlkln2 29865. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Hypothesis
Ref Expression
wlklnwwlkln2lem.1 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Assertion
Ref Expression
wlklnwwlkln2lem (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑁   𝑃,𝑓   𝜑,𝑓

Proof of Theorem wlklnwwlkln2lem
StepHypRef Expression
1 eqid 2735 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlknbp 29824 . . 3 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)))
3 iswwlksn 29820 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
43adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
5 lencl 14551 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℕ0)
65nn0cnd 12564 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℂ)
76adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (♯‘𝑃) ∈ ℂ)
8 1cnd 11230 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 1 ∈ ℂ)
9 nn0cn 12511 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
109adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 𝑁 ∈ ℂ)
117, 8, 10subadd2d 11613 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (((♯‘𝑃) − 1) = 𝑁 ↔ (𝑁 + 1) = (♯‘𝑃)))
12 eqcom 2742 . . . . . . . . . . 11 ((𝑁 + 1) = (♯‘𝑃) ↔ (♯‘𝑃) = (𝑁 + 1))
1311, 12bitr2di 288 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) = (𝑁 + 1) ↔ ((♯‘𝑃) − 1) = 𝑁))
1413biimpcd 249 . . . . . . . . 9 ((♯‘𝑃) = (𝑁 + 1) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) − 1) = 𝑁))
1514adantl 481 . . . . . . . 8 ((𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) − 1) = 𝑁))
1615impcom 407 . . . . . . 7 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → ((♯‘𝑃) − 1) = 𝑁)
17 wlklnwwlkln2lem.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1817com12 32 . . . . . . . . . . . . 13 (𝑃 ∈ (WWalks‘𝐺) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1918adantr 480 . . . . . . . . . . . 12 ((𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2019adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2120imp 406 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
22 simpr 484 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → 𝑓(Walks‘𝐺)𝑃)
23 wlklenvm1 29602 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑃 → (♯‘𝑓) = ((♯‘𝑃) − 1))
2422, 23jccir 521 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → (𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)))
2524ex 412 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (𝑓(Walks‘𝐺)𝑃 → (𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1))))
2625eximdv 1917 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1))))
2721, 26mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)))
28 eqeq2 2747 . . . . . . . . . . 11 (((♯‘𝑃) − 1) = 𝑁 → ((♯‘𝑓) = ((♯‘𝑃) − 1) ↔ (♯‘𝑓) = 𝑁))
2928anbi2d 630 . . . . . . . . . 10 (((♯‘𝑃) − 1) = 𝑁 → ((𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)) ↔ (𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3029exbidv 1921 . . . . . . . . 9 (((♯‘𝑃) − 1) = 𝑁 → (∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = ((♯‘𝑃) − 1)) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3127, 30imbitrid 244 . . . . . . . 8 (((♯‘𝑃) − 1) = 𝑁 → ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3231expd 415 . . . . . . 7 (((♯‘𝑃) − 1) = 𝑁 → (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
3316, 32mpcom 38 . . . . . 6 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3433ex 412 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
354, 34sylbid 240 . . . 4 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
36353adant1 1130 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))))
372, 36mpcom 38 . 2 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
3837com12 32 1 (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  1c1 11130   + caddc 11132  cmin 11466  0cn0 12501  chash 14348  Word cword 14531  Vtxcvtx 28975  Walkscwlks 29576  WWalkscwwlks 29807   WWalksN cwwlksn 29808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-wlks 29579  df-wwlks 29812  df-wwlksn 29813
This theorem is referenced by:  wlklnwwlkln2  29865  wlklnwwlklnupgr2  29867
  Copyright terms: Public domain W3C validator