Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsk13 Structured version   Visualization version   GIF version

Theorem ntrclsk13 44095
Description: The interior of the intersection of any pair is equal to the intersection of the interiors if and only if the closure of the unions of any pair is equal to the union of closures. (Contributed by RP, 19-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsk13 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
Distinct variable groups:   𝐵,𝑠,𝑡,𝑖,𝑗,𝑘   𝐼,𝑠,𝑡,𝑖,𝑗,𝑘   𝜑,𝑠,𝑡,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑡,𝑖,𝑗,𝑘,𝑠)   𝐾(𝑡,𝑖,𝑗,𝑘,𝑠)   𝑂(𝑡,𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclsk13
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 4188 . . . . 5 (𝑠 = 𝑎 → (𝑠𝑡) = (𝑎𝑡))
21fveq2d 6880 . . . 4 (𝑠 = 𝑎 → (𝐼‘(𝑠𝑡)) = (𝐼‘(𝑎𝑡)))
3 fveq2 6876 . . . . 5 (𝑠 = 𝑎 → (𝐼𝑠) = (𝐼𝑎))
43ineq1d 4194 . . . 4 (𝑠 = 𝑎 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)))
52, 4eqeq12d 2751 . . 3 (𝑠 = 𝑎 → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝐼‘(𝑎𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡))))
6 ineq2 4189 . . . . 5 (𝑡 = 𝑏 → (𝑎𝑡) = (𝑎𝑏))
76fveq2d 6880 . . . 4 (𝑡 = 𝑏 → (𝐼‘(𝑎𝑡)) = (𝐼‘(𝑎𝑏)))
8 fveq2 6876 . . . . 5 (𝑡 = 𝑏 → (𝐼𝑡) = (𝐼𝑏))
98ineq2d 4195 . . . 4 (𝑡 = 𝑏 → ((𝐼𝑎) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
107, 9eqeq12d 2751 . . 3 (𝑡 = 𝑏 → ((𝐼‘(𝑎𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)) ↔ (𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏))))
115, 10cbvral2vw 3224 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
12 ntrcls.d . . . . . 6 𝐷 = (𝑂𝐵)
13 ntrcls.r . . . . . 6 (𝜑𝐼𝐷𝐾)
1412, 13ntrclsbex 44058 . . . . 5 (𝜑𝐵 ∈ V)
15 difssd 4112 . . . . 5 (𝜑 → (𝐵𝑠) ⊆ 𝐵)
1614, 15sselpwd 5298 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
1716adantr 480 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
18 elpwi 4582 . . . 4 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
1914adantr 480 . . . . . 6 ((𝜑𝑎𝐵) → 𝐵 ∈ V)
20 difssd 4112 . . . . . 6 ((𝜑𝑎𝐵) → (𝐵𝑎) ⊆ 𝐵)
2119, 20sselpwd 5298 . . . . 5 ((𝜑𝑎𝐵) → (𝐵𝑎) ∈ 𝒫 𝐵)
22 difeq2 4095 . . . . . . . 8 (𝑠 = (𝐵𝑎) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑎)))
2322eqeq2d 2746 . . . . . . 7 (𝑠 = (𝐵𝑎) → (𝑎 = (𝐵𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵𝑎))))
24 eqcom 2742 . . . . . . 7 (𝑎 = (𝐵 ∖ (𝐵𝑎)) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2523, 24bitrdi 287 . . . . . 6 (𝑠 = (𝐵𝑎) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
2625adantl 481 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
27 dfss4 4244 . . . . . . 7 (𝑎𝐵 ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2827biimpi 216 . . . . . 6 (𝑎𝐵 → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2928adantl 481 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
3021, 26, 29rspcedvd 3603 . . . 4 ((𝜑𝑎𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
3118, 30sylan2 593 . . 3 ((𝜑𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
32 ineq1 4188 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝑎𝑏) = ((𝐵𝑠) ∩ 𝑏))
3332fveq2d 6880 . . . . . . 7 (𝑎 = (𝐵𝑠) → (𝐼‘(𝑎𝑏)) = (𝐼‘((𝐵𝑠) ∩ 𝑏)))
34 fveq2 6876 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝐼𝑎) = (𝐼‘(𝐵𝑠)))
3534ineq1d 4194 . . . . . . 7 (𝑎 = (𝐵𝑠) → ((𝐼𝑎) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)))
3633, 35eqeq12d 2751 . . . . . 6 (𝑎 = (𝐵𝑠) → ((𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ (𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
3736ralbidv 3163 . . . . 5 (𝑎 = (𝐵𝑠) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
38373ad2ant3 1135 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
39 difssd 4112 . . . . . . . 8 (𝜑 → (𝐵𝑡) ⊆ 𝐵)
4014, 39sselpwd 5298 . . . . . . 7 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
4140ad2antrr 726 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
42 simpll 766 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → 𝜑)
43 elpwi 4582 . . . . . . . 8 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
4443adantl 481 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → 𝑏𝐵)
45 difssd 4112 . . . . . . . . . 10 (𝜑 → (𝐵𝑏) ⊆ 𝐵)
4614, 45sselpwd 5298 . . . . . . . . 9 (𝜑 → (𝐵𝑏) ∈ 𝒫 𝐵)
4746adantr 480 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝐵𝑏) ∈ 𝒫 𝐵)
48 difeq2 4095 . . . . . . . . . . 11 (𝑡 = (𝐵𝑏) → (𝐵𝑡) = (𝐵 ∖ (𝐵𝑏)))
4948eqeq2d 2746 . . . . . . . . . 10 (𝑡 = (𝐵𝑏) → (𝑏 = (𝐵𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵𝑏))))
50 eqcom 2742 . . . . . . . . . 10 (𝑏 = (𝐵 ∖ (𝐵𝑏)) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5149, 50bitrdi 287 . . . . . . . . 9 (𝑡 = (𝐵𝑏) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
5251adantl 481 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
53 dfss4 4244 . . . . . . . . . 10 (𝑏𝐵 ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5453biimpi 216 . . . . . . . . 9 (𝑏𝐵 → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5554adantl 481 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5647, 52, 55rspcedvd 3603 . . . . . . 7 ((𝜑𝑏𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
5742, 44, 56syl2anc 584 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
58 ineq2 4189 . . . . . . . . . . 11 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = ((𝐵𝑠) ∩ (𝐵𝑡)))
59 difundi 4265 . . . . . . . . . . 11 (𝐵 ∖ (𝑠𝑡)) = ((𝐵𝑠) ∩ (𝐵𝑡))
6058, 59eqtr4di 2788 . . . . . . . . . 10 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = (𝐵 ∖ (𝑠𝑡)))
6160fveq2d 6880 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → (𝐼‘((𝐵𝑠) ∩ 𝑏)) = (𝐼‘(𝐵 ∖ (𝑠𝑡))))
62 fveq2 6876 . . . . . . . . . 10 (𝑏 = (𝐵𝑡) → (𝐼𝑏) = (𝐼‘(𝐵𝑡)))
6362ineq2d 4195 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))
6461, 63eqeq12d 2751 . . . . . . . 8 (𝑏 = (𝐵𝑡) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
65643ad2ant3 1135 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
66 simp1l 1198 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝜑)
6766, 14jccir 521 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝜑𝐵 ∈ V))
68 simp1r 1199 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑠 ∈ 𝒫 𝐵)
69 simp2 1137 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑡 ∈ 𝒫 𝐵)
70 ntrcls.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
7170, 12, 13ntrclsiex 44077 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
72 elmapi 8863 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
7371, 72syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
7473anim1i 615 . . . . . . . . . . 11 ((𝜑𝐵 ∈ V) → (𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V))
7574adantr 480 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V))
76 simpl 482 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
77 simpr 484 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → 𝐵 ∈ V)
78 difssd 4112 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ⊆ 𝐵)
7977, 78sselpwd 5298 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ∈ 𝒫 𝐵)
8076, 79ffvelcdmd 7075 . . . . . . . . . . . 12 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ∈ 𝒫 𝐵)
8180elpwid 4584 . . . . . . . . . . 11 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵)
82 difssd 4112 . . . . . . . . . . . . . . 15 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵𝑠) ⊆ 𝐵)
8377, 82sselpwd 5298 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵𝑠) ∈ 𝒫 𝐵)
8476, 83ffvelcdmd 7075 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ∈ 𝒫 𝐵)
8584elpwid 4584 . . . . . . . . . . . 12 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ⊆ 𝐵)
86 ssinss1 4221 . . . . . . . . . . . 12 ((𝐼‘(𝐵𝑠)) ⊆ 𝐵 → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8785, 86syl 17 . . . . . . . . . . 11 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8881, 87jca 511 . . . . . . . . . 10 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵 ∧ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵))
89 rcompleq 4280 . . . . . . . . . 10 (((𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵 ∧ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
9075, 88, 893syl 18 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
91 simplr 768 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐵 ∈ V)
9271ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
93 eqid 2735 . . . . . . . . . . 11 (𝐷𝐼) = (𝐷𝐼)
94 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠 ∈ 𝒫 𝐵)
9594elpwid 4584 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠𝐵)
96 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡 ∈ 𝒫 𝐵)
9796elpwid 4584 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡𝐵)
9895, 97unssd 4167 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ⊆ 𝐵)
9991, 98sselpwd 5298 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ∈ 𝒫 𝐵)
100 eqid 2735 . . . . . . . . . . 11 ((𝐷𝐼)‘(𝑠𝑡)) = ((𝐷𝐼)‘(𝑠𝑡))
10170, 12, 91, 92, 93, 99, 100dssmapfv3d 44043 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))))
102 simpl 482 . . . . . . . . . . . . 13 ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
103 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
10471ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
105 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
106 eqid 2735 . . . . . . . . . . . . . 14 ((𝐷𝐼)‘𝑠) = ((𝐷𝐼)‘𝑠)
10770, 12, 103, 104, 93, 105, 106dssmapfv3d 44043 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
108102, 107sylan2 593 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
109 simpr 484 . . . . . . . . . . . . 13 ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
110 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
11171ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
112 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
113 eqid 2735 . . . . . . . . . . . . . 14 ((𝐷𝐼)‘𝑡) = ((𝐷𝐼)‘𝑡)
11470, 12, 110, 111, 93, 112, 113dssmapfv3d 44043 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
115109, 114sylan2 593 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
116108, 115uneq12d 4144 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))))
117 difindi 4267 . . . . . . . . . . 11 (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡))))
118116, 117eqtr4di 2788 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
119101, 118eqeq12d 2751 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
120 simpll 766 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝜑)
12170, 12, 13ntrclsfv1 44079 . . . . . . . . . 10 (𝜑 → (𝐷𝐼) = 𝐾)
122 fveq1 6875 . . . . . . . . . . 11 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐾‘(𝑠𝑡)))
123 fveq1 6875 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑠) = (𝐾𝑠))
124 fveq1 6875 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑡) = (𝐾𝑡))
125123, 124uneq12d 4144 . . . . . . . . . . 11 ((𝐷𝐼) = 𝐾 → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡)))
126122, 125eqeq12d 2751 . . . . . . . . . 10 ((𝐷𝐼) = 𝐾 → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
127120, 121, 1263syl 18 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
12890, 119, 1273bitr2d 307 . . . . . . . 8 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
12967, 68, 69, 128syl12anc 836 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13065, 129bitrd 279 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13141, 57, 130ralxfrd2 5382 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
1321313adant3 1132 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13338, 132bitrd 279 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13417, 31, 133ralxfrd2 5382 . 2 (𝜑 → (∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13511, 134bitrid 283 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  𝒫 cpw 4575   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator