Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsk13 Structured version   Visualization version   GIF version

Theorem ntrclsk13 43414
Description: The interior of the intersection of any pair is equal to the intersection of the interiors if and only if the closure of the unions of any pair is equal to the union of closures. (Contributed by RP, 19-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsk13 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
Distinct variable groups:   𝐵,𝑠,𝑡,𝑖,𝑗,𝑘   𝐼,𝑠,𝑡,𝑖,𝑗,𝑘   𝜑,𝑠,𝑡,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑡,𝑖,𝑗,𝑘,𝑠)   𝐾(𝑡,𝑖,𝑗,𝑘,𝑠)   𝑂(𝑡,𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclsk13
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 4201 . . . . 5 (𝑠 = 𝑎 → (𝑠𝑡) = (𝑎𝑡))
21fveq2d 6895 . . . 4 (𝑠 = 𝑎 → (𝐼‘(𝑠𝑡)) = (𝐼‘(𝑎𝑡)))
3 fveq2 6891 . . . . 5 (𝑠 = 𝑎 → (𝐼𝑠) = (𝐼𝑎))
43ineq1d 4207 . . . 4 (𝑠 = 𝑎 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)))
52, 4eqeq12d 2743 . . 3 (𝑠 = 𝑎 → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝐼‘(𝑎𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡))))
6 ineq2 4202 . . . . 5 (𝑡 = 𝑏 → (𝑎𝑡) = (𝑎𝑏))
76fveq2d 6895 . . . 4 (𝑡 = 𝑏 → (𝐼‘(𝑎𝑡)) = (𝐼‘(𝑎𝑏)))
8 fveq2 6891 . . . . 5 (𝑡 = 𝑏 → (𝐼𝑡) = (𝐼𝑏))
98ineq2d 4208 . . . 4 (𝑡 = 𝑏 → ((𝐼𝑎) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
107, 9eqeq12d 2743 . . 3 (𝑡 = 𝑏 → ((𝐼‘(𝑎𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)) ↔ (𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏))))
115, 10cbvral2vw 3233 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
12 ntrcls.d . . . . . 6 𝐷 = (𝑂𝐵)
13 ntrcls.r . . . . . 6 (𝜑𝐼𝐷𝐾)
1412, 13ntrclsbex 43377 . . . . 5 (𝜑𝐵 ∈ V)
15 difssd 4128 . . . . 5 (𝜑 → (𝐵𝑠) ⊆ 𝐵)
1614, 15sselpwd 5322 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
1716adantr 480 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
18 elpwi 4605 . . . 4 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
1914adantr 480 . . . . . 6 ((𝜑𝑎𝐵) → 𝐵 ∈ V)
20 difssd 4128 . . . . . 6 ((𝜑𝑎𝐵) → (𝐵𝑎) ⊆ 𝐵)
2119, 20sselpwd 5322 . . . . 5 ((𝜑𝑎𝐵) → (𝐵𝑎) ∈ 𝒫 𝐵)
22 difeq2 4112 . . . . . . . 8 (𝑠 = (𝐵𝑎) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑎)))
2322eqeq2d 2738 . . . . . . 7 (𝑠 = (𝐵𝑎) → (𝑎 = (𝐵𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵𝑎))))
24 eqcom 2734 . . . . . . 7 (𝑎 = (𝐵 ∖ (𝐵𝑎)) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2523, 24bitrdi 287 . . . . . 6 (𝑠 = (𝐵𝑎) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
2625adantl 481 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
27 dfss4 4254 . . . . . . 7 (𝑎𝐵 ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2827biimpi 215 . . . . . 6 (𝑎𝐵 → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2928adantl 481 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
3021, 26, 29rspcedvd 3609 . . . 4 ((𝜑𝑎𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
3118, 30sylan2 592 . . 3 ((𝜑𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
32 ineq1 4201 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝑎𝑏) = ((𝐵𝑠) ∩ 𝑏))
3332fveq2d 6895 . . . . . . 7 (𝑎 = (𝐵𝑠) → (𝐼‘(𝑎𝑏)) = (𝐼‘((𝐵𝑠) ∩ 𝑏)))
34 fveq2 6891 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝐼𝑎) = (𝐼‘(𝐵𝑠)))
3534ineq1d 4207 . . . . . . 7 (𝑎 = (𝐵𝑠) → ((𝐼𝑎) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)))
3633, 35eqeq12d 2743 . . . . . 6 (𝑎 = (𝐵𝑠) → ((𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ (𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
3736ralbidv 3172 . . . . 5 (𝑎 = (𝐵𝑠) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
38373ad2ant3 1133 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
39 difssd 4128 . . . . . . . 8 (𝜑 → (𝐵𝑡) ⊆ 𝐵)
4014, 39sselpwd 5322 . . . . . . 7 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
4140ad2antrr 725 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
42 simpll 766 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → 𝜑)
43 elpwi 4605 . . . . . . . 8 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
4443adantl 481 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → 𝑏𝐵)
45 difssd 4128 . . . . . . . . . 10 (𝜑 → (𝐵𝑏) ⊆ 𝐵)
4614, 45sselpwd 5322 . . . . . . . . 9 (𝜑 → (𝐵𝑏) ∈ 𝒫 𝐵)
4746adantr 480 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝐵𝑏) ∈ 𝒫 𝐵)
48 difeq2 4112 . . . . . . . . . . 11 (𝑡 = (𝐵𝑏) → (𝐵𝑡) = (𝐵 ∖ (𝐵𝑏)))
4948eqeq2d 2738 . . . . . . . . . 10 (𝑡 = (𝐵𝑏) → (𝑏 = (𝐵𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵𝑏))))
50 eqcom 2734 . . . . . . . . . 10 (𝑏 = (𝐵 ∖ (𝐵𝑏)) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5149, 50bitrdi 287 . . . . . . . . 9 (𝑡 = (𝐵𝑏) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
5251adantl 481 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
53 dfss4 4254 . . . . . . . . . 10 (𝑏𝐵 ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5453biimpi 215 . . . . . . . . 9 (𝑏𝐵 → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5554adantl 481 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5647, 52, 55rspcedvd 3609 . . . . . . 7 ((𝜑𝑏𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
5742, 44, 56syl2anc 583 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
58 ineq2 4202 . . . . . . . . . . 11 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = ((𝐵𝑠) ∩ (𝐵𝑡)))
59 difundi 4275 . . . . . . . . . . 11 (𝐵 ∖ (𝑠𝑡)) = ((𝐵𝑠) ∩ (𝐵𝑡))
6058, 59eqtr4di 2785 . . . . . . . . . 10 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = (𝐵 ∖ (𝑠𝑡)))
6160fveq2d 6895 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → (𝐼‘((𝐵𝑠) ∩ 𝑏)) = (𝐼‘(𝐵 ∖ (𝑠𝑡))))
62 fveq2 6891 . . . . . . . . . 10 (𝑏 = (𝐵𝑡) → (𝐼𝑏) = (𝐼‘(𝐵𝑡)))
6362ineq2d 4208 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))
6461, 63eqeq12d 2743 . . . . . . . 8 (𝑏 = (𝐵𝑡) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
65643ad2ant3 1133 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
66 simp1l 1195 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝜑)
6766, 14jccir 521 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝜑𝐵 ∈ V))
68 simp1r 1196 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑠 ∈ 𝒫 𝐵)
69 simp2 1135 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑡 ∈ 𝒫 𝐵)
70 ntrcls.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
7170, 12, 13ntrclsiex 43396 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
72 elmapi 8857 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
7371, 72syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
7473anim1i 614 . . . . . . . . . . 11 ((𝜑𝐵 ∈ V) → (𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V))
7574adantr 480 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V))
76 simpl 482 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
77 simpr 484 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → 𝐵 ∈ V)
78 difssd 4128 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ⊆ 𝐵)
7977, 78sselpwd 5322 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ∈ 𝒫 𝐵)
8076, 79ffvelcdmd 7089 . . . . . . . . . . . 12 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ∈ 𝒫 𝐵)
8180elpwid 4607 . . . . . . . . . . 11 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵)
82 difssd 4128 . . . . . . . . . . . . . . 15 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵𝑠) ⊆ 𝐵)
8377, 82sselpwd 5322 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵𝑠) ∈ 𝒫 𝐵)
8476, 83ffvelcdmd 7089 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ∈ 𝒫 𝐵)
8584elpwid 4607 . . . . . . . . . . . 12 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ⊆ 𝐵)
86 ssinss1 4233 . . . . . . . . . . . 12 ((𝐼‘(𝐵𝑠)) ⊆ 𝐵 → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8785, 86syl 17 . . . . . . . . . . 11 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8881, 87jca 511 . . . . . . . . . 10 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵 ∧ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵))
89 rcompleq 4291 . . . . . . . . . 10 (((𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵 ∧ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
9075, 88, 893syl 18 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
91 simplr 768 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐵 ∈ V)
9271ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
93 eqid 2727 . . . . . . . . . . 11 (𝐷𝐼) = (𝐷𝐼)
94 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠 ∈ 𝒫 𝐵)
9594elpwid 4607 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠𝐵)
96 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡 ∈ 𝒫 𝐵)
9796elpwid 4607 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡𝐵)
9895, 97unssd 4182 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ⊆ 𝐵)
9991, 98sselpwd 5322 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ∈ 𝒫 𝐵)
100 eqid 2727 . . . . . . . . . . 11 ((𝐷𝐼)‘(𝑠𝑡)) = ((𝐷𝐼)‘(𝑠𝑡))
10170, 12, 91, 92, 93, 99, 100dssmapfv3d 43362 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))))
102 simpl 482 . . . . . . . . . . . . 13 ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
103 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
10471ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
105 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
106 eqid 2727 . . . . . . . . . . . . . 14 ((𝐷𝐼)‘𝑠) = ((𝐷𝐼)‘𝑠)
10770, 12, 103, 104, 93, 105, 106dssmapfv3d 43362 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
108102, 107sylan2 592 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
109 simpr 484 . . . . . . . . . . . . 13 ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
110 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
11171ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
112 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
113 eqid 2727 . . . . . . . . . . . . . 14 ((𝐷𝐼)‘𝑡) = ((𝐷𝐼)‘𝑡)
11470, 12, 110, 111, 93, 112, 113dssmapfv3d 43362 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
115109, 114sylan2 592 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
116108, 115uneq12d 4160 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))))
117 difindi 4277 . . . . . . . . . . 11 (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡))))
118116, 117eqtr4di 2785 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
119101, 118eqeq12d 2743 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
120 simpll 766 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝜑)
12170, 12, 13ntrclsfv1 43398 . . . . . . . . . 10 (𝜑 → (𝐷𝐼) = 𝐾)
122 fveq1 6890 . . . . . . . . . . 11 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐾‘(𝑠𝑡)))
123 fveq1 6890 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑠) = (𝐾𝑠))
124 fveq1 6890 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑡) = (𝐾𝑡))
125123, 124uneq12d 4160 . . . . . . . . . . 11 ((𝐷𝐼) = 𝐾 → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡)))
126122, 125eqeq12d 2743 . . . . . . . . . 10 ((𝐷𝐼) = 𝐾 → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
127120, 121, 1263syl 18 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
12890, 119, 1273bitr2d 307 . . . . . . . 8 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
12967, 68, 69, 128syl12anc 836 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13065, 129bitrd 279 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13141, 57, 130ralxfrd2 5406 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
1321313adant3 1130 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13338, 132bitrd 279 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13417, 31, 133ralxfrd2 5406 . 2 (𝜑 → (∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13511, 134bitrid 283 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  wrex 3065  Vcvv 3469  cdif 3941  cun 3942  cin 3943  wss 3944  𝒫 cpw 4598   class class class wbr 5142  cmpt 5225  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-map 8836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator