Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsk13 Structured version   Visualization version   GIF version

Theorem ntrclsk13 44064
Description: The interior of the intersection of any pair is equal to the intersection of the interiors if and only if the closure of the unions of any pair is equal to the union of closures. (Contributed by RP, 19-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsk13 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
Distinct variable groups:   𝐵,𝑠,𝑡,𝑖,𝑗,𝑘   𝐼,𝑠,𝑡,𝑖,𝑗,𝑘   𝜑,𝑠,𝑡,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑡,𝑖,𝑗,𝑘,𝑠)   𝐾(𝑡,𝑖,𝑗,𝑘,𝑠)   𝑂(𝑡,𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclsk13
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 4164 . . . . 5 (𝑠 = 𝑎 → (𝑠𝑡) = (𝑎𝑡))
21fveq2d 6826 . . . 4 (𝑠 = 𝑎 → (𝐼‘(𝑠𝑡)) = (𝐼‘(𝑎𝑡)))
3 fveq2 6822 . . . . 5 (𝑠 = 𝑎 → (𝐼𝑠) = (𝐼𝑎))
43ineq1d 4170 . . . 4 (𝑠 = 𝑎 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)))
52, 4eqeq12d 2745 . . 3 (𝑠 = 𝑎 → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝐼‘(𝑎𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡))))
6 ineq2 4165 . . . . 5 (𝑡 = 𝑏 → (𝑎𝑡) = (𝑎𝑏))
76fveq2d 6826 . . . 4 (𝑡 = 𝑏 → (𝐼‘(𝑎𝑡)) = (𝐼‘(𝑎𝑏)))
8 fveq2 6822 . . . . 5 (𝑡 = 𝑏 → (𝐼𝑡) = (𝐼𝑏))
98ineq2d 4171 . . . 4 (𝑡 = 𝑏 → ((𝐼𝑎) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
107, 9eqeq12d 2745 . . 3 (𝑡 = 𝑏 → ((𝐼‘(𝑎𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)) ↔ (𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏))))
115, 10cbvral2vw 3211 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
12 ntrcls.d . . . . . 6 𝐷 = (𝑂𝐵)
13 ntrcls.r . . . . . 6 (𝜑𝐼𝐷𝐾)
1412, 13ntrclsbex 44027 . . . . 5 (𝜑𝐵 ∈ V)
15 difssd 4088 . . . . 5 (𝜑 → (𝐵𝑠) ⊆ 𝐵)
1614, 15sselpwd 5267 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
1716adantr 480 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
18 elpwi 4558 . . . 4 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
1914adantr 480 . . . . . 6 ((𝜑𝑎𝐵) → 𝐵 ∈ V)
20 difssd 4088 . . . . . 6 ((𝜑𝑎𝐵) → (𝐵𝑎) ⊆ 𝐵)
2119, 20sselpwd 5267 . . . . 5 ((𝜑𝑎𝐵) → (𝐵𝑎) ∈ 𝒫 𝐵)
22 difeq2 4071 . . . . . . . 8 (𝑠 = (𝐵𝑎) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑎)))
2322eqeq2d 2740 . . . . . . 7 (𝑠 = (𝐵𝑎) → (𝑎 = (𝐵𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵𝑎))))
24 eqcom 2736 . . . . . . 7 (𝑎 = (𝐵 ∖ (𝐵𝑎)) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2523, 24bitrdi 287 . . . . . 6 (𝑠 = (𝐵𝑎) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
2625adantl 481 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
27 dfss4 4220 . . . . . . 7 (𝑎𝐵 ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2827biimpi 216 . . . . . 6 (𝑎𝐵 → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2928adantl 481 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
3021, 26, 29rspcedvd 3579 . . . 4 ((𝜑𝑎𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
3118, 30sylan2 593 . . 3 ((𝜑𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
32 ineq1 4164 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝑎𝑏) = ((𝐵𝑠) ∩ 𝑏))
3332fveq2d 6826 . . . . . . 7 (𝑎 = (𝐵𝑠) → (𝐼‘(𝑎𝑏)) = (𝐼‘((𝐵𝑠) ∩ 𝑏)))
34 fveq2 6822 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝐼𝑎) = (𝐼‘(𝐵𝑠)))
3534ineq1d 4170 . . . . . . 7 (𝑎 = (𝐵𝑠) → ((𝐼𝑎) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)))
3633, 35eqeq12d 2745 . . . . . 6 (𝑎 = (𝐵𝑠) → ((𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ (𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
3736ralbidv 3152 . . . . 5 (𝑎 = (𝐵𝑠) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
38373ad2ant3 1135 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
39 difssd 4088 . . . . . . . 8 (𝜑 → (𝐵𝑡) ⊆ 𝐵)
4014, 39sselpwd 5267 . . . . . . 7 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
4140ad2antrr 726 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
42 simpll 766 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → 𝜑)
43 elpwi 4558 . . . . . . . 8 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
4443adantl 481 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → 𝑏𝐵)
45 difssd 4088 . . . . . . . . . 10 (𝜑 → (𝐵𝑏) ⊆ 𝐵)
4614, 45sselpwd 5267 . . . . . . . . 9 (𝜑 → (𝐵𝑏) ∈ 𝒫 𝐵)
4746adantr 480 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝐵𝑏) ∈ 𝒫 𝐵)
48 difeq2 4071 . . . . . . . . . . 11 (𝑡 = (𝐵𝑏) → (𝐵𝑡) = (𝐵 ∖ (𝐵𝑏)))
4948eqeq2d 2740 . . . . . . . . . 10 (𝑡 = (𝐵𝑏) → (𝑏 = (𝐵𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵𝑏))))
50 eqcom 2736 . . . . . . . . . 10 (𝑏 = (𝐵 ∖ (𝐵𝑏)) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5149, 50bitrdi 287 . . . . . . . . 9 (𝑡 = (𝐵𝑏) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
5251adantl 481 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
53 dfss4 4220 . . . . . . . . . 10 (𝑏𝐵 ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5453biimpi 216 . . . . . . . . 9 (𝑏𝐵 → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5554adantl 481 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5647, 52, 55rspcedvd 3579 . . . . . . 7 ((𝜑𝑏𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
5742, 44, 56syl2anc 584 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
58 ineq2 4165 . . . . . . . . . . 11 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = ((𝐵𝑠) ∩ (𝐵𝑡)))
59 difundi 4241 . . . . . . . . . . 11 (𝐵 ∖ (𝑠𝑡)) = ((𝐵𝑠) ∩ (𝐵𝑡))
6058, 59eqtr4di 2782 . . . . . . . . . 10 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = (𝐵 ∖ (𝑠𝑡)))
6160fveq2d 6826 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → (𝐼‘((𝐵𝑠) ∩ 𝑏)) = (𝐼‘(𝐵 ∖ (𝑠𝑡))))
62 fveq2 6822 . . . . . . . . . 10 (𝑏 = (𝐵𝑡) → (𝐼𝑏) = (𝐼‘(𝐵𝑡)))
6362ineq2d 4171 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))
6461, 63eqeq12d 2745 . . . . . . . 8 (𝑏 = (𝐵𝑡) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
65643ad2ant3 1135 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
66 simp1l 1198 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝜑)
6766, 14jccir 521 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝜑𝐵 ∈ V))
68 simp1r 1199 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑠 ∈ 𝒫 𝐵)
69 simp2 1137 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑡 ∈ 𝒫 𝐵)
70 ntrcls.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
7170, 12, 13ntrclsiex 44046 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
72 elmapi 8776 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
7371, 72syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
7473anim1i 615 . . . . . . . . . . 11 ((𝜑𝐵 ∈ V) → (𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V))
7574adantr 480 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V))
76 simpl 482 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
77 simpr 484 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → 𝐵 ∈ V)
78 difssd 4088 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ⊆ 𝐵)
7977, 78sselpwd 5267 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ∈ 𝒫 𝐵)
8076, 79ffvelcdmd 7019 . . . . . . . . . . . 12 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ∈ 𝒫 𝐵)
8180elpwid 4560 . . . . . . . . . . 11 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵)
82 difssd 4088 . . . . . . . . . . . . . . 15 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵𝑠) ⊆ 𝐵)
8377, 82sselpwd 5267 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵𝑠) ∈ 𝒫 𝐵)
8476, 83ffvelcdmd 7019 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ∈ 𝒫 𝐵)
8584elpwid 4560 . . . . . . . . . . . 12 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ⊆ 𝐵)
86 ssinss1 4197 . . . . . . . . . . . 12 ((𝐼‘(𝐵𝑠)) ⊆ 𝐵 → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8785, 86syl 17 . . . . . . . . . . 11 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8881, 87jca 511 . . . . . . . . . 10 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵 ∧ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵))
89 rcompleq 4256 . . . . . . . . . 10 (((𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵 ∧ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
9075, 88, 893syl 18 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
91 simplr 768 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐵 ∈ V)
9271ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
93 eqid 2729 . . . . . . . . . . 11 (𝐷𝐼) = (𝐷𝐼)
94 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠 ∈ 𝒫 𝐵)
9594elpwid 4560 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠𝐵)
96 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡 ∈ 𝒫 𝐵)
9796elpwid 4560 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡𝐵)
9895, 97unssd 4143 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ⊆ 𝐵)
9991, 98sselpwd 5267 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ∈ 𝒫 𝐵)
100 eqid 2729 . . . . . . . . . . 11 ((𝐷𝐼)‘(𝑠𝑡)) = ((𝐷𝐼)‘(𝑠𝑡))
10170, 12, 91, 92, 93, 99, 100dssmapfv3d 44012 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))))
102 simpl 482 . . . . . . . . . . . . 13 ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
103 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
10471ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
105 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
106 eqid 2729 . . . . . . . . . . . . . 14 ((𝐷𝐼)‘𝑠) = ((𝐷𝐼)‘𝑠)
10770, 12, 103, 104, 93, 105, 106dssmapfv3d 44012 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
108102, 107sylan2 593 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
109 simpr 484 . . . . . . . . . . . . 13 ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
110 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
11171ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
112 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
113 eqid 2729 . . . . . . . . . . . . . 14 ((𝐷𝐼)‘𝑡) = ((𝐷𝐼)‘𝑡)
11470, 12, 110, 111, 93, 112, 113dssmapfv3d 44012 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
115109, 114sylan2 593 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
116108, 115uneq12d 4120 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))))
117 difindi 4243 . . . . . . . . . . 11 (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡))))
118116, 117eqtr4di 2782 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
119101, 118eqeq12d 2745 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
120 simpll 766 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝜑)
12170, 12, 13ntrclsfv1 44048 . . . . . . . . . 10 (𝜑 → (𝐷𝐼) = 𝐾)
122 fveq1 6821 . . . . . . . . . . 11 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐾‘(𝑠𝑡)))
123 fveq1 6821 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑠) = (𝐾𝑠))
124 fveq1 6821 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑡) = (𝐾𝑡))
125123, 124uneq12d 4120 . . . . . . . . . . 11 ((𝐷𝐼) = 𝐾 → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡)))
126122, 125eqeq12d 2745 . . . . . . . . . 10 ((𝐷𝐼) = 𝐾 → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
127120, 121, 1263syl 18 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
12890, 119, 1273bitr2d 307 . . . . . . . 8 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
12967, 68, 69, 128syl12anc 836 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13065, 129bitrd 279 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13141, 57, 130ralxfrd2 5351 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
1321313adant3 1132 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13338, 132bitrd 279 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13417, 31, 133ralxfrd2 5351 . 2 (𝜑 → (∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13511, 134bitrid 283 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator