Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsk13 Structured version   Visualization version   GIF version

Theorem ntrclsk13 41570
Description: The interior of the intersection of any pair is equal to the intersection of the interiors if and only if the closure of the unions of any pair is equal to the union of closures. (Contributed by RP, 19-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsk13 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
Distinct variable groups:   𝐵,𝑠,𝑡,𝑖,𝑗,𝑘   𝐼,𝑠,𝑡,𝑖,𝑗,𝑘   𝜑,𝑠,𝑡,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑡,𝑖,𝑗,𝑘,𝑠)   𝐾(𝑡,𝑖,𝑗,𝑘,𝑠)   𝑂(𝑡,𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclsk13
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 4136 . . . . 5 (𝑠 = 𝑎 → (𝑠𝑡) = (𝑎𝑡))
21fveq2d 6760 . . . 4 (𝑠 = 𝑎 → (𝐼‘(𝑠𝑡)) = (𝐼‘(𝑎𝑡)))
3 fveq2 6756 . . . . 5 (𝑠 = 𝑎 → (𝐼𝑠) = (𝐼𝑎))
43ineq1d 4142 . . . 4 (𝑠 = 𝑎 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)))
52, 4eqeq12d 2754 . . 3 (𝑠 = 𝑎 → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝐼‘(𝑎𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡))))
6 ineq2 4137 . . . . 5 (𝑡 = 𝑏 → (𝑎𝑡) = (𝑎𝑏))
76fveq2d 6760 . . . 4 (𝑡 = 𝑏 → (𝐼‘(𝑎𝑡)) = (𝐼‘(𝑎𝑏)))
8 fveq2 6756 . . . . 5 (𝑡 = 𝑏 → (𝐼𝑡) = (𝐼𝑏))
98ineq2d 4143 . . . 4 (𝑡 = 𝑏 → ((𝐼𝑎) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
107, 9eqeq12d 2754 . . 3 (𝑡 = 𝑏 → ((𝐼‘(𝑎𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)) ↔ (𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏))))
115, 10cbvral2vw 3385 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
12 ntrcls.d . . . . . 6 𝐷 = (𝑂𝐵)
13 ntrcls.r . . . . . 6 (𝜑𝐼𝐷𝐾)
1412, 13ntrclsbex 41533 . . . . 5 (𝜑𝐵 ∈ V)
15 difssd 4063 . . . . 5 (𝜑 → (𝐵𝑠) ⊆ 𝐵)
1614, 15sselpwd 5245 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
1716adantr 480 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
18 elpwi 4539 . . . 4 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
1914adantr 480 . . . . . 6 ((𝜑𝑎𝐵) → 𝐵 ∈ V)
20 difssd 4063 . . . . . 6 ((𝜑𝑎𝐵) → (𝐵𝑎) ⊆ 𝐵)
2119, 20sselpwd 5245 . . . . 5 ((𝜑𝑎𝐵) → (𝐵𝑎) ∈ 𝒫 𝐵)
22 difeq2 4047 . . . . . . . 8 (𝑠 = (𝐵𝑎) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑎)))
2322eqeq2d 2749 . . . . . . 7 (𝑠 = (𝐵𝑎) → (𝑎 = (𝐵𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵𝑎))))
24 eqcom 2745 . . . . . . 7 (𝑎 = (𝐵 ∖ (𝐵𝑎)) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2523, 24bitrdi 286 . . . . . 6 (𝑠 = (𝐵𝑎) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
2625adantl 481 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
27 dfss4 4189 . . . . . . 7 (𝑎𝐵 ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2827biimpi 215 . . . . . 6 (𝑎𝐵 → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2928adantl 481 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
3021, 26, 29rspcedvd 3555 . . . 4 ((𝜑𝑎𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
3118, 30sylan2 592 . . 3 ((𝜑𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
32 ineq1 4136 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝑎𝑏) = ((𝐵𝑠) ∩ 𝑏))
3332fveq2d 6760 . . . . . . 7 (𝑎 = (𝐵𝑠) → (𝐼‘(𝑎𝑏)) = (𝐼‘((𝐵𝑠) ∩ 𝑏)))
34 fveq2 6756 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝐼𝑎) = (𝐼‘(𝐵𝑠)))
3534ineq1d 4142 . . . . . . 7 (𝑎 = (𝐵𝑠) → ((𝐼𝑎) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)))
3633, 35eqeq12d 2754 . . . . . 6 (𝑎 = (𝐵𝑠) → ((𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ (𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
3736ralbidv 3120 . . . . 5 (𝑎 = (𝐵𝑠) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
38373ad2ant3 1133 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏))))
39 difssd 4063 . . . . . . . 8 (𝜑 → (𝐵𝑡) ⊆ 𝐵)
4014, 39sselpwd 5245 . . . . . . 7 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
4140ad2antrr 722 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
42 simpll 763 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → 𝜑)
43 elpwi 4539 . . . . . . . 8 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
4443adantl 481 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → 𝑏𝐵)
45 difssd 4063 . . . . . . . . . 10 (𝜑 → (𝐵𝑏) ⊆ 𝐵)
4614, 45sselpwd 5245 . . . . . . . . 9 (𝜑 → (𝐵𝑏) ∈ 𝒫 𝐵)
4746adantr 480 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝐵𝑏) ∈ 𝒫 𝐵)
48 difeq2 4047 . . . . . . . . . . 11 (𝑡 = (𝐵𝑏) → (𝐵𝑡) = (𝐵 ∖ (𝐵𝑏)))
4948eqeq2d 2749 . . . . . . . . . 10 (𝑡 = (𝐵𝑏) → (𝑏 = (𝐵𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵𝑏))))
50 eqcom 2745 . . . . . . . . . 10 (𝑏 = (𝐵 ∖ (𝐵𝑏)) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5149, 50bitrdi 286 . . . . . . . . 9 (𝑡 = (𝐵𝑏) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
5251adantl 481 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
53 dfss4 4189 . . . . . . . . . 10 (𝑏𝐵 ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5453biimpi 215 . . . . . . . . 9 (𝑏𝐵 → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5554adantl 481 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
5647, 52, 55rspcedvd 3555 . . . . . . 7 ((𝜑𝑏𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
5742, 44, 56syl2anc 583 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
58 ineq2 4137 . . . . . . . . . . 11 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = ((𝐵𝑠) ∩ (𝐵𝑡)))
59 difundi 4210 . . . . . . . . . . 11 (𝐵 ∖ (𝑠𝑡)) = ((𝐵𝑠) ∩ (𝐵𝑡))
6058, 59eqtr4di 2797 . . . . . . . . . 10 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = (𝐵 ∖ (𝑠𝑡)))
6160fveq2d 6760 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → (𝐼‘((𝐵𝑠) ∩ 𝑏)) = (𝐼‘(𝐵 ∖ (𝑠𝑡))))
62 fveq2 6756 . . . . . . . . . 10 (𝑏 = (𝐵𝑡) → (𝐼𝑏) = (𝐼‘(𝐵𝑡)))
6362ineq2d 4143 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))
6461, 63eqeq12d 2754 . . . . . . . 8 (𝑏 = (𝐵𝑡) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
65643ad2ant3 1133 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
66 simp1l 1195 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝜑)
6766, 14jccir 521 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝜑𝐵 ∈ V))
68 simp1r 1196 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑠 ∈ 𝒫 𝐵)
69 simp2 1135 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑡 ∈ 𝒫 𝐵)
70 ntrcls.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
7170, 12, 13ntrclsiex 41552 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
72 elmapi 8595 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
7371, 72syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
7473anim1i 614 . . . . . . . . . . 11 ((𝜑𝐵 ∈ V) → (𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V))
7574adantr 480 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V))
76 simpl 482 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
77 simpr 484 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → 𝐵 ∈ V)
78 difssd 4063 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ⊆ 𝐵)
7977, 78sselpwd 5245 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ∈ 𝒫 𝐵)
8076, 79ffvelrnd 6944 . . . . . . . . . . . 12 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ∈ 𝒫 𝐵)
8180elpwid 4541 . . . . . . . . . . 11 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵)
82 difssd 4063 . . . . . . . . . . . . . . 15 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵𝑠) ⊆ 𝐵)
8377, 82sselpwd 5245 . . . . . . . . . . . . . 14 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐵𝑠) ∈ 𝒫 𝐵)
8476, 83ffvelrnd 6944 . . . . . . . . . . . . 13 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ∈ 𝒫 𝐵)
8584elpwid 4541 . . . . . . . . . . . 12 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ⊆ 𝐵)
86 ssinss1 4168 . . . . . . . . . . . 12 ((𝐼‘(𝐵𝑠)) ⊆ 𝐵 → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8785, 86syl 17 . . . . . . . . . . 11 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8881, 87jca 511 . . . . . . . . . 10 ((𝐼:𝒫 𝐵⟶𝒫 𝐵𝐵 ∈ V) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵 ∧ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵))
89 rcompleq 4226 . . . . . . . . . 10 (((𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵 ∧ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
9075, 88, 893syl 18 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
91 simplr 765 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐵 ∈ V)
9271ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
93 eqid 2738 . . . . . . . . . . 11 (𝐷𝐼) = (𝐷𝐼)
94 simprl 767 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠 ∈ 𝒫 𝐵)
9594elpwid 4541 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠𝐵)
96 simprr 769 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡 ∈ 𝒫 𝐵)
9796elpwid 4541 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡𝐵)
9895, 97unssd 4116 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ⊆ 𝐵)
9991, 98sselpwd 5245 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ∈ 𝒫 𝐵)
100 eqid 2738 . . . . . . . . . . 11 ((𝐷𝐼)‘(𝑠𝑡)) = ((𝐷𝐼)‘(𝑠𝑡))
10170, 12, 91, 92, 93, 99, 100dssmapfv3d 41516 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))))
102 simpl 482 . . . . . . . . . . . . 13 ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
103 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
10471ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
105 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
106 eqid 2738 . . . . . . . . . . . . . 14 ((𝐷𝐼)‘𝑠) = ((𝐷𝐼)‘𝑠)
10770, 12, 103, 104, 93, 105, 106dssmapfv3d 41516 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
108102, 107sylan2 592 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
109 simpr 484 . . . . . . . . . . . . 13 ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
110 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
11171ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
112 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
113 eqid 2738 . . . . . . . . . . . . . 14 ((𝐷𝐼)‘𝑡) = ((𝐷𝐼)‘𝑡)
11470, 12, 110, 111, 93, 112, 113dssmapfv3d 41516 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ V) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
115109, 114sylan2 592 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
116108, 115uneq12d 4094 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))))
117 difindi 4212 . . . . . . . . . . 11 (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡))))
118116, 117eqtr4di 2797 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))))
119101, 118eqeq12d 2754 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
120 simpll 763 . . . . . . . . . 10 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝜑)
12170, 12, 13ntrclsfv1 41554 . . . . . . . . . 10 (𝜑 → (𝐷𝐼) = 𝐾)
122 fveq1 6755 . . . . . . . . . . 11 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐾‘(𝑠𝑡)))
123 fveq1 6755 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑠) = (𝐾𝑠))
124 fveq1 6755 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑡) = (𝐾𝑡))
125123, 124uneq12d 4094 . . . . . . . . . . 11 ((𝐷𝐼) = 𝐾 → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡)))
126122, 125eqeq12d 2754 . . . . . . . . . 10 ((𝐷𝐼) = 𝐾 → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
127120, 121, 1263syl 18 . . . . . . . . 9 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (((𝐷𝐼)‘(𝑠𝑡)) = (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
12890, 119, 1273bitr2d 306 . . . . . . . 8 (((𝜑𝐵 ∈ V) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
12967, 68, 69, 128syl12anc 833 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘(𝐵 ∖ (𝑠𝑡))) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13065, 129bitrd 278 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13141, 57, 130ralxfrd2 5330 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
1321313adant3 1130 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘((𝐵𝑠) ∩ 𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13338, 132bitrd 278 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13417, 31, 133ralxfrd2 5330 . 2 (𝜑 → (∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝐼‘(𝑎𝑏)) = ((𝐼𝑎) ∩ (𝐼𝑏)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
13511, 134syl5bb 282 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator