![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maxprmfct | Structured version Visualization version GIF version |
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
maxprmfct.1 | ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} |
Ref | Expression |
---|---|
maxprmfct | ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxprmfct.1 | . . . . . 6 ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} | |
2 | 1 | ssrab3 3908 | . . . . 5 ⊢ 𝑆 ⊆ ℙ |
3 | prmz 15794 | . . . . . 6 ⊢ (𝑦 ∈ ℙ → 𝑦 ∈ ℤ) | |
4 | 3 | ssriv 3824 | . . . . 5 ⊢ ℙ ⊆ ℤ |
5 | 2, 4 | sstri 3829 | . . . 4 ⊢ 𝑆 ⊆ ℤ |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ⊆ ℤ) |
7 | exprmfct 15820 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁) | |
8 | breq1 4889 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) | |
9 | 8, 1 | elrab2 3575 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
10 | 9 | exbii 1892 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
11 | n0 4158 | . . . . 5 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
12 | df-rex 3095 | . . . . 5 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) | |
13 | 10, 11, 12 | 3bitr4ri 296 | . . . 4 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ 𝑆 ≠ ∅) |
14 | 7, 13 | sylib 210 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ≠ ∅) |
15 | eluzelz 12002 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
16 | eluz2nn 12032 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
17 | 3 | anim1i 608 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁) → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
18 | 9, 17 | sylbi 209 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑆 → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
19 | dvdsle 15439 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁)) | |
20 | 19 | expcom 404 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁))) |
21 | 20 | impd 400 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁) → 𝑦 ≤ 𝑁)) |
22 | 18, 21 | syl5 34 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ 𝑆 → 𝑦 ≤ 𝑁)) |
23 | 22 | ralrimiv 3146 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
24 | 16, 23 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
25 | brralrspcev 4946 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) | |
26 | 15, 24, 25 | syl2anc 579 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
27 | 6, 14, 26 | 3jca 1119 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
28 | suprzcl2 12085 | . 2 ⊢ ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆) | |
29 | 27, 28 | jccir 517 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∃wex 1823 ∈ wcel 2106 ≠ wne 2968 ∀wral 3089 ∃wrex 3090 {crab 3093 ⊆ wss 3791 ∅c0 4140 class class class wbr 4886 ‘cfv 6135 supcsup 8634 ℝcr 10271 < clt 10411 ≤ cle 10412 ℕcn 11374 2c2 11430 ℤcz 11728 ℤ≥cuz 11992 ∥ cdvds 15387 ℙcprime 15790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-dvds 15388 df-prm 15791 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |