MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxprmfct Structured version   Visualization version   GIF version

Theorem maxprmfct 16043
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
maxprmfct.1 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
Assertion
Ref Expression
maxprmfct (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑧,𝑁,𝑦   𝑥,𝑆,𝑦
Allowed substitution hint:   𝑆(𝑧)

Proof of Theorem maxprmfct
StepHypRef Expression
1 maxprmfct.1 . . . . . 6 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
21ssrab3 4008 . . . . 5 𝑆 ⊆ ℙ
3 prmz 16009 . . . . . 6 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
43ssriv 3919 . . . . 5 ℙ ⊆ ℤ
52, 4sstri 3924 . . . 4 𝑆 ⊆ ℤ
65a1i 11 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ⊆ ℤ)
7 exprmfct 16038 . . . 4 (𝑁 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑁)
8 breq1 5033 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑁𝑦𝑁))
98, 1elrab2 3631 . . . . . 6 (𝑦𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦𝑁))
109exbii 1849 . . . . 5 (∃𝑦 𝑦𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
11 n0 4260 . . . . 5 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
12 df-rex 3112 . . . . 5 (∃𝑦 ∈ ℙ 𝑦𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
1310, 11, 123bitr4ri 307 . . . 4 (∃𝑦 ∈ ℙ 𝑦𝑁𝑆 ≠ ∅)
147, 13sylib 221 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ≠ ∅)
15 eluzelz 12241 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
16 eluz2nn 12272 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
173anim1i 617 . . . . . . . 8 ((𝑦 ∈ ℙ ∧ 𝑦𝑁) → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
189, 17sylbi 220 . . . . . . 7 (𝑦𝑆 → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
19 dvdsle 15652 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦𝑁𝑦𝑁))
2019expcom 417 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦𝑁𝑦𝑁)))
2120impd 414 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦𝑁) → 𝑦𝑁))
2218, 21syl5 34 . . . . . 6 (𝑁 ∈ ℕ → (𝑦𝑆𝑦𝑁))
2322ralrimiv 3148 . . . . 5 (𝑁 ∈ ℕ → ∀𝑦𝑆 𝑦𝑁)
2416, 23syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → ∀𝑦𝑆 𝑦𝑁)
25 brralrspcev 5090 . . . 4 ((𝑁 ∈ ℤ ∧ ∀𝑦𝑆 𝑦𝑁) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
2615, 24, 25syl2anc 587 . . 3 (𝑁 ∈ (ℤ‘2) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
276, 14, 263jca 1125 . 2 (𝑁 ∈ (ℤ‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
28 suprzcl2 12326 . 2 ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆)
2927, 28jccir 525 1 (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   class class class wbr 5030  cfv 6324  supcsup 8888  cr 10525   < clt 10664  cle 10665  cn 11625  2c2 11680  cz 11969  cuz 12231  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator