MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxprmfct Structured version   Visualization version   GIF version

Theorem maxprmfct 16342
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
maxprmfct.1 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
Assertion
Ref Expression
maxprmfct (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑧,𝑁,𝑦   𝑥,𝑆,𝑦
Allowed substitution hint:   𝑆(𝑧)

Proof of Theorem maxprmfct
StepHypRef Expression
1 maxprmfct.1 . . . . . 6 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
21ssrab3 4011 . . . . 5 𝑆 ⊆ ℙ
3 prmz 16308 . . . . . 6 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
43ssriv 3921 . . . . 5 ℙ ⊆ ℤ
52, 4sstri 3926 . . . 4 𝑆 ⊆ ℤ
65a1i 11 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ⊆ ℤ)
7 exprmfct 16337 . . . 4 (𝑁 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑁)
8 breq1 5073 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑁𝑦𝑁))
98, 1elrab2 3620 . . . . . 6 (𝑦𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦𝑁))
109exbii 1851 . . . . 5 (∃𝑦 𝑦𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
11 n0 4277 . . . . 5 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
12 df-rex 3069 . . . . 5 (∃𝑦 ∈ ℙ 𝑦𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
1310, 11, 123bitr4ri 303 . . . 4 (∃𝑦 ∈ ℙ 𝑦𝑁𝑆 ≠ ∅)
147, 13sylib 217 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ≠ ∅)
15 eluzelz 12521 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
16 eluz2nn 12553 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
173anim1i 614 . . . . . . . 8 ((𝑦 ∈ ℙ ∧ 𝑦𝑁) → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
189, 17sylbi 216 . . . . . . 7 (𝑦𝑆 → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
19 dvdsle 15947 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦𝑁𝑦𝑁))
2019expcom 413 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦𝑁𝑦𝑁)))
2120impd 410 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦𝑁) → 𝑦𝑁))
2218, 21syl5 34 . . . . . 6 (𝑁 ∈ ℕ → (𝑦𝑆𝑦𝑁))
2322ralrimiv 3106 . . . . 5 (𝑁 ∈ ℕ → ∀𝑦𝑆 𝑦𝑁)
2416, 23syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → ∀𝑦𝑆 𝑦𝑁)
25 brralrspcev 5130 . . . 4 ((𝑁 ∈ ℤ ∧ ∀𝑦𝑆 𝑦𝑁) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
2615, 24, 25syl2anc 583 . . 3 (𝑁 ∈ (ℤ‘2) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
276, 14, 263jca 1126 . 2 (𝑁 ∈ (ℤ‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
28 suprzcl2 12607 . 2 ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆)
2927, 28jccir 521 1 (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  wss 3883  c0 4253   class class class wbr 5070  cfv 6418  supcsup 9129  cr 10801   < clt 10940  cle 10941  cn 11903  2c2 11958  cz 12249  cuz 12511  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator