MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxprmfct Structured version   Visualization version   GIF version

Theorem maxprmfct 16686
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
maxprmfct.1 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
Assertion
Ref Expression
maxprmfct (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑧,𝑁,𝑦   𝑥,𝑆,𝑦
Allowed substitution hint:   𝑆(𝑧)

Proof of Theorem maxprmfct
StepHypRef Expression
1 maxprmfct.1 . . . . . 6 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
21ssrab3 4048 . . . . 5 𝑆 ⊆ ℙ
3 prmz 16652 . . . . . 6 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
43ssriv 3953 . . . . 5 ℙ ⊆ ℤ
52, 4sstri 3959 . . . 4 𝑆 ⊆ ℤ
65a1i 11 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ⊆ ℤ)
7 exprmfct 16681 . . . 4 (𝑁 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑁)
8 breq1 5113 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑁𝑦𝑁))
98, 1elrab2 3665 . . . . . 6 (𝑦𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦𝑁))
109exbii 1848 . . . . 5 (∃𝑦 𝑦𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
11 n0 4319 . . . . 5 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
12 df-rex 3055 . . . . 5 (∃𝑦 ∈ ℙ 𝑦𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
1310, 11, 123bitr4ri 304 . . . 4 (∃𝑦 ∈ ℙ 𝑦𝑁𝑆 ≠ ∅)
147, 13sylib 218 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ≠ ∅)
15 eluzelz 12810 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
16 eluz2nn 12854 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
173anim1i 615 . . . . . . . 8 ((𝑦 ∈ ℙ ∧ 𝑦𝑁) → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
189, 17sylbi 217 . . . . . . 7 (𝑦𝑆 → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
19 dvdsle 16287 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦𝑁𝑦𝑁))
2019expcom 413 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦𝑁𝑦𝑁)))
2120impd 410 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦𝑁) → 𝑦𝑁))
2218, 21syl5 34 . . . . . 6 (𝑁 ∈ ℕ → (𝑦𝑆𝑦𝑁))
2322ralrimiv 3125 . . . . 5 (𝑁 ∈ ℕ → ∀𝑦𝑆 𝑦𝑁)
2416, 23syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → ∀𝑦𝑆 𝑦𝑁)
25 brralrspcev 5170 . . . 4 ((𝑁 ∈ ℤ ∧ ∀𝑦𝑆 𝑦𝑁) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
2615, 24, 25syl2anc 584 . . 3 (𝑁 ∈ (ℤ‘2) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
276, 14, 263jca 1128 . 2 (𝑁 ∈ (ℤ‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
28 suprzcl2 12904 . 2 ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆)
2927, 28jccir 521 1 (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  supcsup 9398  cr 11074   < clt 11215  cle 11216  cn 12193  2c2 12248  cz 12536  cuz 12800  cdvds 16229  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator