Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > maxprmfct | Structured version Visualization version GIF version |
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
maxprmfct.1 | ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} |
Ref | Expression |
---|---|
maxprmfct | ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxprmfct.1 | . . . . . 6 ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} | |
2 | 1 | ssrab3 4020 | . . . . 5 ⊢ 𝑆 ⊆ ℙ |
3 | prmz 16378 | . . . . . 6 ⊢ (𝑦 ∈ ℙ → 𝑦 ∈ ℤ) | |
4 | 3 | ssriv 3930 | . . . . 5 ⊢ ℙ ⊆ ℤ |
5 | 2, 4 | sstri 3935 | . . . 4 ⊢ 𝑆 ⊆ ℤ |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ⊆ ℤ) |
7 | exprmfct 16407 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁) | |
8 | breq1 5082 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) | |
9 | 8, 1 | elrab2 3629 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
10 | 9 | exbii 1854 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
11 | n0 4286 | . . . . 5 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
12 | df-rex 3072 | . . . . 5 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) | |
13 | 10, 11, 12 | 3bitr4ri 304 | . . . 4 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ 𝑆 ≠ ∅) |
14 | 7, 13 | sylib 217 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ≠ ∅) |
15 | eluzelz 12591 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
16 | eluz2nn 12623 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
17 | 3 | anim1i 615 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁) → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
18 | 9, 17 | sylbi 216 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑆 → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
19 | dvdsle 16017 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁)) | |
20 | 19 | expcom 414 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁))) |
21 | 20 | impd 411 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁) → 𝑦 ≤ 𝑁)) |
22 | 18, 21 | syl5 34 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ 𝑆 → 𝑦 ≤ 𝑁)) |
23 | 22 | ralrimiv 3109 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
24 | 16, 23 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
25 | brralrspcev 5139 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) | |
26 | 15, 24, 25 | syl2anc 584 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
27 | 6, 14, 26 | 3jca 1127 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
28 | suprzcl2 12677 | . 2 ⊢ ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆) | |
29 | 27, 28 | jccir 522 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 ∃wrex 3067 {crab 3070 ⊆ wss 3892 ∅c0 4262 class class class wbr 5079 ‘cfv 6432 supcsup 9177 ℝcr 10871 < clt 11010 ≤ cle 11011 ℕcn 11973 2c2 12028 ℤcz 12319 ℤ≥cuz 12581 ∥ cdvds 15961 ℙcprime 16374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-fz 13239 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-dvds 15962 df-prm 16375 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |