![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maxprmfct | Structured version Visualization version GIF version |
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
maxprmfct.1 | ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} |
Ref | Expression |
---|---|
maxprmfct | ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxprmfct.1 | . . . . . 6 ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} | |
2 | 1 | ssrab3 4105 | . . . . 5 ⊢ 𝑆 ⊆ ℙ |
3 | prmz 16722 | . . . . . 6 ⊢ (𝑦 ∈ ℙ → 𝑦 ∈ ℤ) | |
4 | 3 | ssriv 4012 | . . . . 5 ⊢ ℙ ⊆ ℤ |
5 | 2, 4 | sstri 4018 | . . . 4 ⊢ 𝑆 ⊆ ℤ |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ⊆ ℤ) |
7 | exprmfct 16751 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁) | |
8 | breq1 5169 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) | |
9 | 8, 1 | elrab2 3711 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
10 | 9 | exbii 1846 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
11 | n0 4376 | . . . . 5 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
12 | df-rex 3077 | . . . . 5 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) | |
13 | 10, 11, 12 | 3bitr4ri 304 | . . . 4 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ 𝑆 ≠ ∅) |
14 | 7, 13 | sylib 218 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ≠ ∅) |
15 | eluzelz 12913 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
16 | eluz2nn 12949 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
17 | 3 | anim1i 614 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁) → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
18 | 9, 17 | sylbi 217 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑆 → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
19 | dvdsle 16358 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁)) | |
20 | 19 | expcom 413 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁))) |
21 | 20 | impd 410 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁) → 𝑦 ≤ 𝑁)) |
22 | 18, 21 | syl5 34 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ 𝑆 → 𝑦 ≤ 𝑁)) |
23 | 22 | ralrimiv 3151 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
24 | 16, 23 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
25 | brralrspcev 5226 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) | |
26 | 15, 24, 25 | syl2anc 583 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
27 | 6, 14, 26 | 3jca 1128 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
28 | suprzcl2 13003 | . 2 ⊢ ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆) | |
29 | 27, 28 | jccir 521 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 supcsup 9509 ℝcr 11183 < clt 11324 ≤ cle 11325 ℕcn 12293 2c2 12348 ℤcz 12639 ℤ≥cuz 12903 ∥ cdvds 16302 ℙcprime 16718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-prm 16719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |