![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maxprmfct | Structured version Visualization version GIF version |
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
maxprmfct.1 | ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} |
Ref | Expression |
---|---|
maxprmfct | ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxprmfct.1 | . . . . . 6 ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} | |
2 | 1 | ssrab3 4075 | . . . . 5 ⊢ 𝑆 ⊆ ℙ |
3 | prmz 16619 | . . . . . 6 ⊢ (𝑦 ∈ ℙ → 𝑦 ∈ ℤ) | |
4 | 3 | ssriv 3981 | . . . . 5 ⊢ ℙ ⊆ ℤ |
5 | 2, 4 | sstri 3986 | . . . 4 ⊢ 𝑆 ⊆ ℤ |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ⊆ ℤ) |
7 | exprmfct 16648 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁) | |
8 | breq1 5144 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) | |
9 | 8, 1 | elrab2 3681 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
10 | 9 | exbii 1842 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
11 | n0 4341 | . . . . 5 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
12 | df-rex 3065 | . . . . 5 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) | |
13 | 10, 11, 12 | 3bitr4ri 304 | . . . 4 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ 𝑆 ≠ ∅) |
14 | 7, 13 | sylib 217 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ≠ ∅) |
15 | eluzelz 12836 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
16 | eluz2nn 12872 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
17 | 3 | anim1i 614 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁) → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
18 | 9, 17 | sylbi 216 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑆 → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
19 | dvdsle 16260 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁)) | |
20 | 19 | expcom 413 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁))) |
21 | 20 | impd 410 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁) → 𝑦 ≤ 𝑁)) |
22 | 18, 21 | syl5 34 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ 𝑆 → 𝑦 ≤ 𝑁)) |
23 | 22 | ralrimiv 3139 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
24 | 16, 23 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
25 | brralrspcev 5201 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) | |
26 | 15, 24, 25 | syl2anc 583 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
27 | 6, 14, 26 | 3jca 1125 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
28 | suprzcl2 12926 | . 2 ⊢ ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆) | |
29 | 27, 28 | jccir 521 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 {crab 3426 ⊆ wss 3943 ∅c0 4317 class class class wbr 5141 ‘cfv 6537 supcsup 9437 ℝcr 11111 < clt 11252 ≤ cle 11253 ℕcn 12216 2c2 12271 ℤcz 12562 ℤ≥cuz 12826 ∥ cdvds 16204 ℙcprime 16615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-fz 13491 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16205 df-prm 16616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |