Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > maxprmfct | Structured version Visualization version GIF version |
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
maxprmfct.1 | ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} |
Ref | Expression |
---|---|
maxprmfct | ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxprmfct.1 | . . . . . 6 ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} | |
2 | 1 | ssrab3 4011 | . . . . 5 ⊢ 𝑆 ⊆ ℙ |
3 | prmz 16308 | . . . . . 6 ⊢ (𝑦 ∈ ℙ → 𝑦 ∈ ℤ) | |
4 | 3 | ssriv 3921 | . . . . 5 ⊢ ℙ ⊆ ℤ |
5 | 2, 4 | sstri 3926 | . . . 4 ⊢ 𝑆 ⊆ ℤ |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ⊆ ℤ) |
7 | exprmfct 16337 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁) | |
8 | breq1 5073 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) | |
9 | 8, 1 | elrab2 3620 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
10 | 9 | exbii 1851 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) |
11 | n0 4277 | . . . . 5 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
12 | df-rex 3069 | . . . . 5 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁)) | |
13 | 10, 11, 12 | 3bitr4ri 303 | . . . 4 ⊢ (∃𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ 𝑆 ≠ ∅) |
14 | 7, 13 | sylib 217 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑆 ≠ ∅) |
15 | eluzelz 12521 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
16 | eluz2nn 12553 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
17 | 3 | anim1i 614 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁) → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
18 | 9, 17 | sylbi 216 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑆 → (𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁)) |
19 | dvdsle 15947 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁)) | |
20 | 19 | expcom 413 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁))) |
21 | 20 | impd 410 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁) → 𝑦 ≤ 𝑁)) |
22 | 18, 21 | syl5 34 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑦 ∈ 𝑆 → 𝑦 ≤ 𝑁)) |
23 | 22 | ralrimiv 3106 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
24 | 16, 23 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) |
25 | brralrspcev 5130 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑁) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) | |
26 | 15, 24, 25 | syl2anc 583 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
27 | 6, 14, 26 | 3jca 1126 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
28 | suprzcl2 12607 | . 2 ⊢ ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆) | |
29 | 27, 28 | jccir 521 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 supcsup 9129 ℝcr 10801 < clt 10940 ≤ cle 10941 ℕcn 11903 2c2 11958 ℤcz 12249 ℤ≥cuz 12511 ∥ cdvds 15891 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-prm 16305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |