MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxprmfct Structured version   Visualization version   GIF version

Theorem maxprmfct 16742
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
maxprmfct.1 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
Assertion
Ref Expression
maxprmfct (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑧,𝑁,𝑦   𝑥,𝑆,𝑦
Allowed substitution hint:   𝑆(𝑧)

Proof of Theorem maxprmfct
StepHypRef Expression
1 maxprmfct.1 . . . . . 6 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
21ssrab3 4091 . . . . 5 𝑆 ⊆ ℙ
3 prmz 16708 . . . . . 6 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
43ssriv 3998 . . . . 5 ℙ ⊆ ℤ
52, 4sstri 4004 . . . 4 𝑆 ⊆ ℤ
65a1i 11 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ⊆ ℤ)
7 exprmfct 16737 . . . 4 (𝑁 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑁)
8 breq1 5150 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑁𝑦𝑁))
98, 1elrab2 3697 . . . . . 6 (𝑦𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦𝑁))
109exbii 1844 . . . . 5 (∃𝑦 𝑦𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
11 n0 4358 . . . . 5 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
12 df-rex 3068 . . . . 5 (∃𝑦 ∈ ℙ 𝑦𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
1310, 11, 123bitr4ri 304 . . . 4 (∃𝑦 ∈ ℙ 𝑦𝑁𝑆 ≠ ∅)
147, 13sylib 218 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ≠ ∅)
15 eluzelz 12885 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
16 eluz2nn 12921 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
173anim1i 615 . . . . . . . 8 ((𝑦 ∈ ℙ ∧ 𝑦𝑁) → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
189, 17sylbi 217 . . . . . . 7 (𝑦𝑆 → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
19 dvdsle 16343 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦𝑁𝑦𝑁))
2019expcom 413 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦𝑁𝑦𝑁)))
2120impd 410 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦𝑁) → 𝑦𝑁))
2218, 21syl5 34 . . . . . 6 (𝑁 ∈ ℕ → (𝑦𝑆𝑦𝑁))
2322ralrimiv 3142 . . . . 5 (𝑁 ∈ ℕ → ∀𝑦𝑆 𝑦𝑁)
2416, 23syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → ∀𝑦𝑆 𝑦𝑁)
25 brralrspcev 5207 . . . 4 ((𝑁 ∈ ℤ ∧ ∀𝑦𝑆 𝑦𝑁) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
2615, 24, 25syl2anc 584 . . 3 (𝑁 ∈ (ℤ‘2) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
276, 14, 263jca 1127 . 2 (𝑁 ∈ (ℤ‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
28 suprzcl2 12977 . 2 ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆)
2927, 28jccir 521 1 (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  wss 3962  c0 4338   class class class wbr 5147  cfv 6562  supcsup 9477  cr 11151   < clt 11292  cle 11293  cn 12263  2c2 12318  cz 12610  cuz 12875  cdvds 16286  cprime 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-prm 16705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator