Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem4 Structured version   Visualization version   GIF version

Theorem kur14lem4 35173
Description: Lemma for kur14 35180. Complementation is an involution on the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
Assertion
Ref Expression
kur14lem4 (𝑋 ∖ (𝑋𝐴)) = 𝐴

Proof of Theorem kur14lem4
StepHypRef Expression
1 kur14lem.a . 2 𝐴𝑋
2 dfss4 4249 . 2 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
31, 2mpbi 230 1 (𝑋 ∖ (𝑋𝐴)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  cdif 3928  wss 3931   cuni 4887  cfv 6541  Topctop 22847  intcnt 22971  clsccl 22972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-in 3938  df-ss 3948
This theorem is referenced by:  kur14lem7  35176
  Copyright terms: Public domain W3C validator