![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem4 | Structured version Visualization version GIF version |
Description: Lemma for kur14 34662. Complementation is an involution on the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | β’ π½ β Top |
kur14lem.x | β’ π = βͺ π½ |
kur14lem.k | β’ πΎ = (clsβπ½) |
kur14lem.i | β’ πΌ = (intβπ½) |
kur14lem.a | β’ π΄ β π |
Ref | Expression |
---|---|
kur14lem4 | β’ (π β (π β π΄)) = π΄ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.a | . 2 β’ π΄ β π | |
2 | dfss4 4250 | . 2 β’ (π΄ β π β (π β (π β π΄)) = π΄) | |
3 | 1, 2 | mpbi 229 | 1 β’ (π β (π β π΄)) = π΄ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 β cdif 3937 β wss 3940 βͺ cuni 4899 βcfv 6533 Topctop 22716 intcnt 22842 clsccl 22843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-in 3947 df-ss 3957 |
This theorem is referenced by: kur14lem7 34658 |
Copyright terms: Public domain | W3C validator |