Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem4 Structured version   Visualization version   GIF version

Theorem kur14lem4 34655
Description: Lemma for kur14 34662. Complementation is an involution on the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = βˆͺ 𝐽
kur14lem.k 𝐾 = (clsβ€˜π½)
kur14lem.i 𝐼 = (intβ€˜π½)
kur14lem.a 𝐴 βŠ† 𝑋
Assertion
Ref Expression
kur14lem4 (𝑋 βˆ– (𝑋 βˆ– 𝐴)) = 𝐴

Proof of Theorem kur14lem4
StepHypRef Expression
1 kur14lem.a . 2 𝐴 βŠ† 𝑋
2 dfss4 4250 . 2 (𝐴 βŠ† 𝑋 ↔ (𝑋 βˆ– (𝑋 βˆ– 𝐴)) = 𝐴)
31, 2mpbi 229 1 (𝑋 βˆ– (𝑋 βˆ– 𝐴)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∈ wcel 2098   βˆ– cdif 3937   βŠ† wss 3940  βˆͺ cuni 4899  β€˜cfv 6533  Topctop 22716  intcnt 22842  clsccl 22843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-in 3947  df-ss 3957
This theorem is referenced by:  kur14lem7  34658
  Copyright terms: Public domain W3C validator