| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35203. Complementation is an involution on the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem.j | ⊢ 𝐽 ∈ Top |
| kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
| kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
| kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
| kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
| Ref | Expression |
|---|---|
| kur14lem4 | ⊢ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem.a | . 2 ⊢ 𝐴 ⊆ 𝑋 | |
| 2 | dfss4 4234 | . 2 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∖ cdif 3913 ⊆ wss 3916 ∪ cuni 4873 ‘cfv 6513 Topctop 22786 intcnt 22910 clsccl 22911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-in 3923 df-ss 3933 |
| This theorem is referenced by: kur14lem7 35199 |
| Copyright terms: Public domain | W3C validator |