Proof of Theorem kur14lem7
| Step | Hyp | Ref
| Expression |
| 1 | | elun 4153 |
. . 3
⊢ (𝑁 ∈ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) ↔ (𝑁 ∈ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∨ 𝑁 ∈ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}))) |
| 2 | | elun 4153 |
. . . . 5
⊢ (𝑁 ∈ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ↔ (𝑁 ∈ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∨ 𝑁 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))})) |
| 3 | | elun 4153 |
. . . . . . 7
⊢ (𝑁 ∈ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ↔ (𝑁 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∨ 𝑁 ∈ {𝐵, 𝐶, (𝐼‘𝐴)})) |
| 4 | | eltpi 4688 |
. . . . . . . . 9
⊢ (𝑁 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} → (𝑁 = 𝐴 ∨ 𝑁 = (𝑋 ∖ 𝐴) ∨ 𝑁 = (𝐾‘𝐴))) |
| 5 | | kur14lem.a |
. . . . . . . . . . 11
⊢ 𝐴 ⊆ 𝑋 |
| 6 | | ssun1 4178 |
. . . . . . . . . . . . 13
⊢ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) |
| 7 | | ssun1 4178 |
. . . . . . . . . . . . . 14
⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ⊆ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) |
| 8 | | ssun1 4178 |
. . . . . . . . . . . . . . 15
⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ⊆ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
| 9 | | kur14lem.t |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
| 10 | 8, 9 | sseqtrri 4033 |
. . . . . . . . . . . . . 14
⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ⊆ 𝑇 |
| 11 | 7, 10 | sstri 3993 |
. . . . . . . . . . . . 13
⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ⊆ 𝑇 |
| 12 | 6, 11 | sstri 3993 |
. . . . . . . . . . . 12
⊢ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ 𝑇 |
| 13 | | kur14lem.j |
. . . . . . . . . . . . . . . 16
⊢ 𝐽 ∈ Top |
| 14 | | kur14lem.x |
. . . . . . . . . . . . . . . . 17
⊢ 𝑋 = ∪
𝐽 |
| 15 | 14 | topopn 22912 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 16 | 13, 15 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ 𝑋 ∈ 𝐽 |
| 17 | 16 | elexi 3503 |
. . . . . . . . . . . . . 14
⊢ 𝑋 ∈ V |
| 18 | | difss 4136 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∖ 𝐴) ⊆ 𝑋 |
| 19 | 17, 18 | ssexi 5322 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ 𝐴) ∈ V |
| 20 | 19 | tpid2 4770 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ 𝐴) ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} |
| 21 | 12, 20 | sselii 3980 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 |
| 22 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢ (𝐾‘𝐴) ∈ V |
| 23 | 22 | tpid3 4773 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐴) ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} |
| 24 | 12, 23 | sselii 3980 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐴) ∈ 𝑇 |
| 25 | 5, 21, 24 | kur14lem1 35211 |
. . . . . . . . . 10
⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 26 | | kur14lem.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (cls‘𝐽) |
| 27 | | kur14lem.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (int‘𝐽) |
| 28 | 13, 14, 26, 27, 5 | kur14lem4 35214 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 |
| 29 | 17, 5 | ssexi 5322 |
. . . . . . . . . . . . . 14
⊢ 𝐴 ∈ V |
| 30 | 29 | tpid1 4768 |
. . . . . . . . . . . . 13
⊢ 𝐴 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} |
| 31 | 12, 30 | sselii 3980 |
. . . . . . . . . . . 12
⊢ 𝐴 ∈ 𝑇 |
| 32 | 28, 31 | eqeltri 2837 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ 𝑇 |
| 33 | | kur14lem.c |
. . . . . . . . . . . 12
⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) |
| 34 | | ssun2 4179 |
. . . . . . . . . . . . . 14
⊢ {𝐵, 𝐶, (𝐼‘𝐴)} ⊆ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) |
| 35 | 34, 11 | sstri 3993 |
. . . . . . . . . . . . 13
⊢ {𝐵, 𝐶, (𝐼‘𝐴)} ⊆ 𝑇 |
| 36 | 13, 14, 26, 27, 18 | kur14lem3 35213 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾‘(𝑋 ∖ 𝐴)) ⊆ 𝑋 |
| 37 | 33, 36 | eqsstri 4030 |
. . . . . . . . . . . . . . 15
⊢ 𝐶 ⊆ 𝑋 |
| 38 | 17, 37 | ssexi 5322 |
. . . . . . . . . . . . . 14
⊢ 𝐶 ∈ V |
| 39 | 38 | tpid2 4770 |
. . . . . . . . . . . . 13
⊢ 𝐶 ∈ {𝐵, 𝐶, (𝐼‘𝐴)} |
| 40 | 35, 39 | sselii 3980 |
. . . . . . . . . . . 12
⊢ 𝐶 ∈ 𝑇 |
| 41 | 33, 40 | eqeltrri 2838 |
. . . . . . . . . . 11
⊢ (𝐾‘(𝑋 ∖ 𝐴)) ∈ 𝑇 |
| 42 | 18, 32, 41 | kur14lem1 35211 |
. . . . . . . . . 10
⊢ (𝑁 = (𝑋 ∖ 𝐴) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 43 | 13, 14, 26, 27, 5 | kur14lem3 35213 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐴) ⊆ 𝑋 |
| 44 | | kur14lem.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) |
| 45 | | difss 4136 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∖ (𝐾‘𝐴)) ⊆ 𝑋 |
| 46 | 44, 45 | eqsstri 4030 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 ⊆ 𝑋 |
| 47 | 17, 46 | ssexi 5322 |
. . . . . . . . . . . . . 14
⊢ 𝐵 ∈ V |
| 48 | 47 | tpid1 4768 |
. . . . . . . . . . . . 13
⊢ 𝐵 ∈ {𝐵, 𝐶, (𝐼‘𝐴)} |
| 49 | 35, 48 | sselii 3980 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ 𝑇 |
| 50 | 44, 49 | eqeltrri 2838 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘𝐴)) ∈ 𝑇 |
| 51 | 13, 14, 26, 27, 5 | kur14lem5 35215 |
. . . . . . . . . . . 12
⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
| 52 | 51, 24 | eqeltri 2837 |
. . . . . . . . . . 11
⊢ (𝐾‘(𝐾‘𝐴)) ∈ 𝑇 |
| 53 | 43, 50, 52 | kur14lem1 35211 |
. . . . . . . . . 10
⊢ (𝑁 = (𝐾‘𝐴) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 54 | 25, 42, 53 | 3jaoi 1430 |
. . . . . . . . 9
⊢ ((𝑁 = 𝐴 ∨ 𝑁 = (𝑋 ∖ 𝐴) ∨ 𝑁 = (𝐾‘𝐴)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 55 | 4, 54 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 56 | | eltpi 4688 |
. . . . . . . . 9
⊢ (𝑁 ∈ {𝐵, 𝐶, (𝐼‘𝐴)} → (𝑁 = 𝐵 ∨ 𝑁 = 𝐶 ∨ 𝑁 = (𝐼‘𝐴))) |
| 57 | 44 | difeq2i 4123 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ 𝐵) = (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐴))) |
| 58 | 13, 14, 26, 27, 43 | kur14lem4 35214 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐴))) = (𝐾‘𝐴) |
| 59 | 57, 58 | eqtri 2765 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ 𝐵) = (𝐾‘𝐴) |
| 60 | 59, 24 | eqeltri 2837 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝐵) ∈ 𝑇 |
| 61 | | ssun2 4179 |
. . . . . . . . . . . . 13
⊢ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} ⊆ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) |
| 62 | 61, 10 | sstri 3993 |
. . . . . . . . . . . 12
⊢ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} ⊆ 𝑇 |
| 63 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢ (𝐾‘𝐵) ∈ V |
| 64 | 63 | tpid1 4768 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐵) ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} |
| 65 | 62, 64 | sselii 3980 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐵) ∈ 𝑇 |
| 66 | 46, 60, 65 | kur14lem1 35211 |
. . . . . . . . . 10
⊢ (𝑁 = 𝐵 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 67 | 33 | difeq2i 4123 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ 𝐶) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) |
| 68 | 13, 14, 26, 27, 5 | kur14lem2 35212 |
. . . . . . . . . . . . 13
⊢ (𝐼‘𝐴) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) |
| 69 | 67, 68 | eqtr4i 2768 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ 𝐶) = (𝐼‘𝐴) |
| 70 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢ (𝐼‘𝐴) ∈ V |
| 71 | 70 | tpid3 4773 |
. . . . . . . . . . . . 13
⊢ (𝐼‘𝐴) ∈ {𝐵, 𝐶, (𝐼‘𝐴)} |
| 72 | 35, 71 | sselii 3980 |
. . . . . . . . . . . 12
⊢ (𝐼‘𝐴) ∈ 𝑇 |
| 73 | 69, 72 | eqeltri 2837 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝐶) ∈ 𝑇 |
| 74 | 13, 14, 26, 27, 18 | kur14lem5 35215 |
. . . . . . . . . . . . 13
⊢ (𝐾‘(𝐾‘(𝑋 ∖ 𝐴))) = (𝐾‘(𝑋 ∖ 𝐴)) |
| 75 | 33 | fveq2i 6909 |
. . . . . . . . . . . . 13
⊢ (𝐾‘𝐶) = (𝐾‘(𝐾‘(𝑋 ∖ 𝐴))) |
| 76 | 74, 75, 33 | 3eqtr4i 2775 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐶) = 𝐶 |
| 77 | 76, 40 | eqeltri 2837 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐶) ∈ 𝑇 |
| 78 | 37, 73, 77 | kur14lem1 35211 |
. . . . . . . . . 10
⊢ (𝑁 = 𝐶 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 79 | | difss 4136 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) ⊆ 𝑋 |
| 80 | 68, 79 | eqsstri 4030 |
. . . . . . . . . . 11
⊢ (𝐼‘𝐴) ⊆ 𝑋 |
| 81 | 69 | difeq2i 4123 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ (𝑋 ∖ 𝐶)) = (𝑋 ∖ (𝐼‘𝐴)) |
| 82 | 13, 14, 26, 27, 37 | kur14lem4 35214 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ (𝑋 ∖ 𝐶)) = 𝐶 |
| 83 | 81, 82 | eqtr3i 2767 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ (𝐼‘𝐴)) = 𝐶 |
| 84 | 83, 40 | eqeltri 2837 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐼‘𝐴)) ∈ 𝑇 |
| 85 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢ (𝐾‘(𝐼‘𝐴)) ∈ V |
| 86 | 85 | tpid3 4773 |
. . . . . . . . . . . 12
⊢ (𝐾‘(𝐼‘𝐴)) ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} |
| 87 | 62, 86 | sselii 3980 |
. . . . . . . . . . 11
⊢ (𝐾‘(𝐼‘𝐴)) ∈ 𝑇 |
| 88 | 80, 84, 87 | kur14lem1 35211 |
. . . . . . . . . 10
⊢ (𝑁 = (𝐼‘𝐴) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 89 | 66, 78, 88 | 3jaoi 1430 |
. . . . . . . . 9
⊢ ((𝑁 = 𝐵 ∨ 𝑁 = 𝐶 ∨ 𝑁 = (𝐼‘𝐴)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 90 | 56, 89 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ {𝐵, 𝐶, (𝐼‘𝐴)} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 91 | 55, 90 | jaoi 858 |
. . . . . . 7
⊢ ((𝑁 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∨ 𝑁 ∈ {𝐵, 𝐶, (𝐼‘𝐴)}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 92 | 3, 91 | sylbi 217 |
. . . . . 6
⊢ (𝑁 ∈ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 93 | | eltpi 4688 |
. . . . . . 7
⊢ (𝑁 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} → (𝑁 = (𝐾‘𝐵) ∨ 𝑁 = 𝐷 ∨ 𝑁 = (𝐾‘(𝐼‘𝐴)))) |
| 94 | 13, 14, 26, 27, 46 | kur14lem3 35213 |
. . . . . . . . 9
⊢ (𝐾‘𝐵) ⊆ 𝑋 |
| 95 | 13, 14, 26, 27, 43 | kur14lem2 35212 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘𝐴)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) |
| 96 | | kur14lem.d |
. . . . . . . . . . 11
⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) |
| 97 | 44 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐵) = (𝐾‘(𝑋 ∖ (𝐾‘𝐴))) |
| 98 | 97 | difeq2i 4123 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) |
| 99 | 95, 96, 98 | 3eqtr4i 2775 |
. . . . . . . . . 10
⊢ 𝐷 = (𝑋 ∖ (𝐾‘𝐵)) |
| 100 | 96, 95 | eqtri 2765 |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) |
| 101 | | difss 4136 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) ⊆ 𝑋 |
| 102 | 100, 101 | eqsstri 4030 |
. . . . . . . . . . . . 13
⊢ 𝐷 ⊆ 𝑋 |
| 103 | 17, 102 | ssexi 5322 |
. . . . . . . . . . . 12
⊢ 𝐷 ∈ V |
| 104 | 103 | tpid2 4770 |
. . . . . . . . . . 11
⊢ 𝐷 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} |
| 105 | 62, 104 | sselii 3980 |
. . . . . . . . . 10
⊢ 𝐷 ∈ 𝑇 |
| 106 | 99, 105 | eqeltrri 2838 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐾‘𝐵)) ∈ 𝑇 |
| 107 | 13, 14, 26, 27, 46 | kur14lem5 35215 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐾‘𝐵)) = (𝐾‘𝐵) |
| 108 | 107, 65 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝐾‘(𝐾‘𝐵)) ∈ 𝑇 |
| 109 | 94, 106, 108 | kur14lem1 35211 |
. . . . . . . 8
⊢ (𝑁 = (𝐾‘𝐵) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 110 | 99 | difeq2i 4123 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝐷) = (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐵))) |
| 111 | 13, 14, 26, 27, 94 | kur14lem4 35214 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐵))) = (𝐾‘𝐵) |
| 112 | 110, 111 | eqtri 2765 |
. . . . . . . . . 10
⊢ (𝑋 ∖ 𝐷) = (𝐾‘𝐵) |
| 113 | 112, 65 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝑋 ∖ 𝐷) ∈ 𝑇 |
| 114 | | ssun1 4178 |
. . . . . . . . . . 11
⊢ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ⊆ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) |
| 115 | | ssun2 4179 |
. . . . . . . . . . . 12
⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ⊆ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
| 116 | 115, 9 | sseqtrri 4033 |
. . . . . . . . . . 11
⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ⊆ 𝑇 |
| 117 | 114, 116 | sstri 3993 |
. . . . . . . . . 10
⊢ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ⊆ 𝑇 |
| 118 | | fvex 6919 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐷) ∈ V |
| 119 | 118 | tpid2 4770 |
. . . . . . . . . 10
⊢ (𝐾‘𝐷) ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} |
| 120 | 117, 119 | sselii 3980 |
. . . . . . . . 9
⊢ (𝐾‘𝐷) ∈ 𝑇 |
| 121 | 102, 113,
120 | kur14lem1 35211 |
. . . . . . . 8
⊢ (𝑁 = 𝐷 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 122 | 13, 14, 26, 27, 80 | kur14lem3 35213 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘𝐴)) ⊆ 𝑋 |
| 123 | 13, 14, 26, 27, 37 | kur14lem2 35212 |
. . . . . . . . . . 11
⊢ (𝐼‘𝐶) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐶))) |
| 124 | 69 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢ (𝐾‘(𝑋 ∖ 𝐶)) = (𝐾‘(𝐼‘𝐴)) |
| 125 | 124 | difeq2i 4123 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐶))) = (𝑋 ∖ (𝐾‘(𝐼‘𝐴))) |
| 126 | 123, 125 | eqtri 2765 |
. . . . . . . . . 10
⊢ (𝐼‘𝐶) = (𝑋 ∖ (𝐾‘(𝐼‘𝐴))) |
| 127 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝐼‘𝐶) ∈ V |
| 128 | 127 | tpid1 4768 |
. . . . . . . . . . 11
⊢ (𝐼‘𝐶) ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} |
| 129 | 117, 128 | sselii 3980 |
. . . . . . . . . 10
⊢ (𝐼‘𝐶) ∈ 𝑇 |
| 130 | 126, 129 | eqeltrri 2838 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐾‘(𝐼‘𝐴))) ∈ 𝑇 |
| 131 | 13, 14, 26, 27, 80 | kur14lem5 35215 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐾‘(𝐼‘𝐴))) = (𝐾‘(𝐼‘𝐴)) |
| 132 | 131, 87 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝐾‘(𝐾‘(𝐼‘𝐴))) ∈ 𝑇 |
| 133 | 122, 130,
132 | kur14lem1 35211 |
. . . . . . . 8
⊢ (𝑁 = (𝐾‘(𝐼‘𝐴)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 134 | 109, 121,
133 | 3jaoi 1430 |
. . . . . . 7
⊢ ((𝑁 = (𝐾‘𝐵) ∨ 𝑁 = 𝐷 ∨ 𝑁 = (𝐾‘(𝐼‘𝐴))) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 135 | 93, 134 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 136 | 92, 135 | jaoi 858 |
. . . . 5
⊢ ((𝑁 ∈ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∨ 𝑁 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 137 | 2, 136 | sylbi 217 |
. . . 4
⊢ (𝑁 ∈ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 138 | | elun 4153 |
. . . . 5
⊢ (𝑁 ∈ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ↔ (𝑁 ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∨ 𝑁 ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
| 139 | | eltpi 4688 |
. . . . . . 7
⊢ (𝑁 ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} → (𝑁 = (𝐼‘𝐶) ∨ 𝑁 = (𝐾‘𝐷) ∨ 𝑁 = (𝐼‘(𝐾‘𝐵)))) |
| 140 | | difss 4136 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐶))) ⊆ 𝑋 |
| 141 | 123, 140 | eqsstri 4030 |
. . . . . . . . 9
⊢ (𝐼‘𝐶) ⊆ 𝑋 |
| 142 | 126 | difeq2i 4123 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐼‘𝐶)) = (𝑋 ∖ (𝑋 ∖ (𝐾‘(𝐼‘𝐴)))) |
| 143 | 13, 14, 26, 27, 122 | kur14lem4 35214 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘(𝐼‘𝐴)))) = (𝐾‘(𝐼‘𝐴)) |
| 144 | 142, 143 | eqtri 2765 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐼‘𝐶)) = (𝐾‘(𝐼‘𝐴)) |
| 145 | 144, 87 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐼‘𝐶)) ∈ 𝑇 |
| 146 | | ssun2 4179 |
. . . . . . . . . . 11
⊢ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} ⊆ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) |
| 147 | 146, 116 | sstri 3993 |
. . . . . . . . . 10
⊢ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} ⊆ 𝑇 |
| 148 | | fvex 6919 |
. . . . . . . . . . 11
⊢ (𝐾‘(𝐼‘𝐶)) ∈ V |
| 149 | 148 | prid1 4762 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐼‘𝐶)) ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} |
| 150 | 147, 149 | sselii 3980 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘𝐶)) ∈ 𝑇 |
| 151 | 141, 145,
150 | kur14lem1 35211 |
. . . . . . . 8
⊢ (𝑁 = (𝐼‘𝐶) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 152 | 13, 14, 26, 27, 102 | kur14lem3 35213 |
. . . . . . . . 9
⊢ (𝐾‘𝐷) ⊆ 𝑋 |
| 153 | 99 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐷) = (𝐾‘(𝑋 ∖ (𝐾‘𝐵))) |
| 154 | 153 | difeq2i 4123 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘𝐷)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵)))) |
| 155 | 13, 14, 26, 27, 94 | kur14lem2 35212 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵)))) |
| 156 | 154, 155 | eqtr4i 2768 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘𝐷)) = (𝐼‘(𝐾‘𝐵)) |
| 157 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝐼‘(𝐾‘𝐵)) ∈ V |
| 158 | 157 | tpid3 4773 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘𝐵)) ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} |
| 159 | 117, 158 | sselii 3980 |
. . . . . . . . . 10
⊢ (𝐼‘(𝐾‘𝐵)) ∈ 𝑇 |
| 160 | 156, 159 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐾‘𝐷)) ∈ 𝑇 |
| 161 | 13, 14, 26, 27, 102 | kur14lem5 35215 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐾‘𝐷)) = (𝐾‘𝐷) |
| 162 | 161, 120 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝐾‘(𝐾‘𝐷)) ∈ 𝑇 |
| 163 | 152, 160,
162 | kur14lem1 35211 |
. . . . . . . 8
⊢ (𝑁 = (𝐾‘𝐷) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 164 | | difss 4136 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵)))) ⊆ 𝑋 |
| 165 | 155, 164 | eqsstri 4030 |
. . . . . . . . 9
⊢ (𝐼‘(𝐾‘𝐵)) ⊆ 𝑋 |
| 166 | 156 | difeq2i 4123 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐷))) = (𝑋 ∖ (𝐼‘(𝐾‘𝐵))) |
| 167 | 13, 14, 26, 27, 152 | kur14lem4 35214 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐷))) = (𝐾‘𝐷) |
| 168 | 166, 167 | eqtr3i 2767 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐼‘(𝐾‘𝐵))) = (𝐾‘𝐷) |
| 169 | 168, 120 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐼‘(𝐾‘𝐵))) ∈ 𝑇 |
| 170 | 13, 14, 26, 27, 5, 44 | kur14lem6 35216 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐼‘(𝐾‘𝐵))) = (𝐾‘𝐵) |
| 171 | 170, 65 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘(𝐾‘𝐵))) ∈ 𝑇 |
| 172 | 165, 169,
171 | kur14lem1 35211 |
. . . . . . . 8
⊢ (𝑁 = (𝐼‘(𝐾‘𝐵)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 173 | 151, 163,
172 | 3jaoi 1430 |
. . . . . . 7
⊢ ((𝑁 = (𝐼‘𝐶) ∨ 𝑁 = (𝐾‘𝐷) ∨ 𝑁 = (𝐼‘(𝐾‘𝐵))) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 174 | 139, 173 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 175 | | elpri 4649 |
. . . . . . 7
⊢ (𝑁 ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} → (𝑁 = (𝐾‘(𝐼‘𝐶)) ∨ 𝑁 = (𝐼‘(𝐾‘(𝐼‘𝐴))))) |
| 176 | 13, 14, 26, 27, 141 | kur14lem3 35213 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘𝐶)) ⊆ 𝑋 |
| 177 | 126 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢ (𝐾‘(𝐼‘𝐶)) = (𝐾‘(𝑋 ∖ (𝐾‘(𝐼‘𝐴)))) |
| 178 | 177 | difeq2i 4123 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘(𝐼‘𝐶))) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘(𝐼‘𝐴))))) |
| 179 | 13, 14, 26, 27, 122 | kur14lem2 35212 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘(𝐼‘𝐴))))) |
| 180 | 178, 179 | eqtr4i 2768 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘(𝐼‘𝐶))) = (𝐼‘(𝐾‘(𝐼‘𝐴))) |
| 181 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) ∈ V |
| 182 | 181 | prid2 4763 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} |
| 183 | 147, 182 | sselii 3980 |
. . . . . . . . . 10
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) ∈ 𝑇 |
| 184 | 180, 183 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐾‘(𝐼‘𝐶))) ∈ 𝑇 |
| 185 | 13, 14, 26, 27, 141 | kur14lem5 35215 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐾‘(𝐼‘𝐶))) = (𝐾‘(𝐼‘𝐶)) |
| 186 | 185, 150 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝐾‘(𝐾‘(𝐼‘𝐶))) ∈ 𝑇 |
| 187 | 176, 184,
186 | kur14lem1 35211 |
. . . . . . . 8
⊢ (𝑁 = (𝐾‘(𝐼‘𝐶)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 188 | | difss 4136 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘(𝐼‘𝐴))))) ⊆ 𝑋 |
| 189 | 179, 188 | eqsstri 4030 |
. . . . . . . . 9
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) ⊆ 𝑋 |
| 190 | 180 | difeq2i 4123 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘(𝐼‘𝐶)))) = (𝑋 ∖ (𝐼‘(𝐾‘(𝐼‘𝐴)))) |
| 191 | 13, 14, 26, 27, 176 | kur14lem4 35214 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘(𝐼‘𝐶)))) = (𝐾‘(𝐼‘𝐶)) |
| 192 | 190, 191 | eqtr3i 2767 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐼‘(𝐾‘(𝐼‘𝐴)))) = (𝐾‘(𝐼‘𝐶)) |
| 193 | 192, 150 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐼‘(𝐾‘(𝐼‘𝐴)))) ∈ 𝑇 |
| 194 | 13, 14, 26, 27, 18, 68 | kur14lem6 35216 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐼‘(𝐾‘(𝐼‘𝐴)))) = (𝐾‘(𝐼‘𝐴)) |
| 195 | 194, 87 | eqeltri 2837 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘(𝐾‘(𝐼‘𝐴)))) ∈ 𝑇 |
| 196 | 189, 193,
195 | kur14lem1 35211 |
. . . . . . . 8
⊢ (𝑁 = (𝐼‘(𝐾‘(𝐼‘𝐴))) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 197 | 187, 196 | jaoi 858 |
. . . . . . 7
⊢ ((𝑁 = (𝐾‘(𝐼‘𝐶)) ∨ 𝑁 = (𝐼‘(𝐾‘(𝐼‘𝐴)))) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 198 | 175, 197 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 199 | 174, 198 | jaoi 858 |
. . . . 5
⊢ ((𝑁 ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∨ 𝑁 ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 200 | 138, 199 | sylbi 217 |
. . . 4
⊢ (𝑁 ∈ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 201 | 137, 200 | jaoi 858 |
. . 3
⊢ ((𝑁 ∈ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∨ 𝑁 ∈ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 202 | 1, 201 | sylbi 217 |
. 2
⊢ (𝑁 ∈ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| 203 | 202, 9 | eleq2s 2859 |
1
⊢ (𝑁 ∈ 𝑇 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |