Proof of Theorem kur14lem7
Step | Hyp | Ref
| Expression |
1 | | elun 4079 |
. . 3
⊢ (𝑁 ∈ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) ↔ (𝑁 ∈ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∨ 𝑁 ∈ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}))) |
2 | | elun 4079 |
. . . . 5
⊢ (𝑁 ∈ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ↔ (𝑁 ∈ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∨ 𝑁 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))})) |
3 | | elun 4079 |
. . . . . . 7
⊢ (𝑁 ∈ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ↔ (𝑁 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∨ 𝑁 ∈ {𝐵, 𝐶, (𝐼‘𝐴)})) |
4 | | eltpi 4620 |
. . . . . . . . 9
⊢ (𝑁 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} → (𝑁 = 𝐴 ∨ 𝑁 = (𝑋 ∖ 𝐴) ∨ 𝑁 = (𝐾‘𝐴))) |
5 | | kur14lem.a |
. . . . . . . . . . 11
⊢ 𝐴 ⊆ 𝑋 |
6 | | ssun1 4102 |
. . . . . . . . . . . . 13
⊢ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) |
7 | | ssun1 4102 |
. . . . . . . . . . . . . 14
⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ⊆ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) |
8 | | ssun1 4102 |
. . . . . . . . . . . . . . 15
⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ⊆ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
9 | | kur14lem.t |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
10 | 8, 9 | sseqtrri 3954 |
. . . . . . . . . . . . . 14
⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ⊆ 𝑇 |
11 | 7, 10 | sstri 3926 |
. . . . . . . . . . . . 13
⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ⊆ 𝑇 |
12 | 6, 11 | sstri 3926 |
. . . . . . . . . . . 12
⊢ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ 𝑇 |
13 | | kur14lem.j |
. . . . . . . . . . . . . . . 16
⊢ 𝐽 ∈ Top |
14 | | kur14lem.x |
. . . . . . . . . . . . . . . . 17
⊢ 𝑋 = ∪
𝐽 |
15 | 14 | topopn 21963 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
16 | 13, 15 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ 𝑋 ∈ 𝐽 |
17 | 16 | elexi 3441 |
. . . . . . . . . . . . . 14
⊢ 𝑋 ∈ V |
18 | | difss 4062 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∖ 𝐴) ⊆ 𝑋 |
19 | 17, 18 | ssexi 5241 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ 𝐴) ∈ V |
20 | 19 | tpid2 4703 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ 𝐴) ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} |
21 | 12, 20 | sselii 3914 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 |
22 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢ (𝐾‘𝐴) ∈ V |
23 | 22 | tpid3 4706 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐴) ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} |
24 | 12, 23 | sselii 3914 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐴) ∈ 𝑇 |
25 | 5, 21, 24 | kur14lem1 33068 |
. . . . . . . . . 10
⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
26 | | kur14lem.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (cls‘𝐽) |
27 | | kur14lem.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (int‘𝐽) |
28 | 13, 14, 26, 27, 5 | kur14lem4 33071 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 |
29 | 17, 5 | ssexi 5241 |
. . . . . . . . . . . . . 14
⊢ 𝐴 ∈ V |
30 | 29 | tpid1 4701 |
. . . . . . . . . . . . 13
⊢ 𝐴 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} |
31 | 12, 30 | sselii 3914 |
. . . . . . . . . . . 12
⊢ 𝐴 ∈ 𝑇 |
32 | 28, 31 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ 𝑇 |
33 | | kur14lem.c |
. . . . . . . . . . . 12
⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) |
34 | | ssun2 4103 |
. . . . . . . . . . . . . 14
⊢ {𝐵, 𝐶, (𝐼‘𝐴)} ⊆ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) |
35 | 34, 11 | sstri 3926 |
. . . . . . . . . . . . 13
⊢ {𝐵, 𝐶, (𝐼‘𝐴)} ⊆ 𝑇 |
36 | 13, 14, 26, 27, 18 | kur14lem3 33070 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾‘(𝑋 ∖ 𝐴)) ⊆ 𝑋 |
37 | 33, 36 | eqsstri 3951 |
. . . . . . . . . . . . . . 15
⊢ 𝐶 ⊆ 𝑋 |
38 | 17, 37 | ssexi 5241 |
. . . . . . . . . . . . . 14
⊢ 𝐶 ∈ V |
39 | 38 | tpid2 4703 |
. . . . . . . . . . . . 13
⊢ 𝐶 ∈ {𝐵, 𝐶, (𝐼‘𝐴)} |
40 | 35, 39 | sselii 3914 |
. . . . . . . . . . . 12
⊢ 𝐶 ∈ 𝑇 |
41 | 33, 40 | eqeltrri 2836 |
. . . . . . . . . . 11
⊢ (𝐾‘(𝑋 ∖ 𝐴)) ∈ 𝑇 |
42 | 18, 32, 41 | kur14lem1 33068 |
. . . . . . . . . 10
⊢ (𝑁 = (𝑋 ∖ 𝐴) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
43 | 13, 14, 26, 27, 5 | kur14lem3 33070 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐴) ⊆ 𝑋 |
44 | | kur14lem.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) |
45 | | difss 4062 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∖ (𝐾‘𝐴)) ⊆ 𝑋 |
46 | 44, 45 | eqsstri 3951 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 ⊆ 𝑋 |
47 | 17, 46 | ssexi 5241 |
. . . . . . . . . . . . . 14
⊢ 𝐵 ∈ V |
48 | 47 | tpid1 4701 |
. . . . . . . . . . . . 13
⊢ 𝐵 ∈ {𝐵, 𝐶, (𝐼‘𝐴)} |
49 | 35, 48 | sselii 3914 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ 𝑇 |
50 | 44, 49 | eqeltrri 2836 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘𝐴)) ∈ 𝑇 |
51 | 13, 14, 26, 27, 5 | kur14lem5 33072 |
. . . . . . . . . . . 12
⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
52 | 51, 24 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ (𝐾‘(𝐾‘𝐴)) ∈ 𝑇 |
53 | 43, 50, 52 | kur14lem1 33068 |
. . . . . . . . . 10
⊢ (𝑁 = (𝐾‘𝐴) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
54 | 25, 42, 53 | 3jaoi 1425 |
. . . . . . . . 9
⊢ ((𝑁 = 𝐴 ∨ 𝑁 = (𝑋 ∖ 𝐴) ∨ 𝑁 = (𝐾‘𝐴)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
55 | 4, 54 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
56 | | eltpi 4620 |
. . . . . . . . 9
⊢ (𝑁 ∈ {𝐵, 𝐶, (𝐼‘𝐴)} → (𝑁 = 𝐵 ∨ 𝑁 = 𝐶 ∨ 𝑁 = (𝐼‘𝐴))) |
57 | 44 | difeq2i 4050 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ 𝐵) = (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐴))) |
58 | 13, 14, 26, 27, 43 | kur14lem4 33071 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐴))) = (𝐾‘𝐴) |
59 | 57, 58 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ 𝐵) = (𝐾‘𝐴) |
60 | 59, 24 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝐵) ∈ 𝑇 |
61 | | ssun2 4103 |
. . . . . . . . . . . . 13
⊢ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} ⊆ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) |
62 | 61, 10 | sstri 3926 |
. . . . . . . . . . . 12
⊢ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} ⊆ 𝑇 |
63 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢ (𝐾‘𝐵) ∈ V |
64 | 63 | tpid1 4701 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐵) ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} |
65 | 62, 64 | sselii 3914 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐵) ∈ 𝑇 |
66 | 46, 60, 65 | kur14lem1 33068 |
. . . . . . . . . 10
⊢ (𝑁 = 𝐵 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
67 | 33 | difeq2i 4050 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ 𝐶) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) |
68 | 13, 14, 26, 27, 5 | kur14lem2 33069 |
. . . . . . . . . . . . 13
⊢ (𝐼‘𝐴) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) |
69 | 67, 68 | eqtr4i 2769 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ 𝐶) = (𝐼‘𝐴) |
70 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢ (𝐼‘𝐴) ∈ V |
71 | 70 | tpid3 4706 |
. . . . . . . . . . . . 13
⊢ (𝐼‘𝐴) ∈ {𝐵, 𝐶, (𝐼‘𝐴)} |
72 | 35, 71 | sselii 3914 |
. . . . . . . . . . . 12
⊢ (𝐼‘𝐴) ∈ 𝑇 |
73 | 69, 72 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝐶) ∈ 𝑇 |
74 | 13, 14, 26, 27, 18 | kur14lem5 33072 |
. . . . . . . . . . . . 13
⊢ (𝐾‘(𝐾‘(𝑋 ∖ 𝐴))) = (𝐾‘(𝑋 ∖ 𝐴)) |
75 | 33 | fveq2i 6759 |
. . . . . . . . . . . . 13
⊢ (𝐾‘𝐶) = (𝐾‘(𝐾‘(𝑋 ∖ 𝐴))) |
76 | 74, 75, 33 | 3eqtr4i 2776 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐶) = 𝐶 |
77 | 76, 40 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐶) ∈ 𝑇 |
78 | 37, 73, 77 | kur14lem1 33068 |
. . . . . . . . . 10
⊢ (𝑁 = 𝐶 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
79 | | difss 4062 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) ⊆ 𝑋 |
80 | 68, 79 | eqsstri 3951 |
. . . . . . . . . . 11
⊢ (𝐼‘𝐴) ⊆ 𝑋 |
81 | 69 | difeq2i 4050 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ (𝑋 ∖ 𝐶)) = (𝑋 ∖ (𝐼‘𝐴)) |
82 | 13, 14, 26, 27, 37 | kur14lem4 33071 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∖ (𝑋 ∖ 𝐶)) = 𝐶 |
83 | 81, 82 | eqtr3i 2768 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ (𝐼‘𝐴)) = 𝐶 |
84 | 83, 40 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐼‘𝐴)) ∈ 𝑇 |
85 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢ (𝐾‘(𝐼‘𝐴)) ∈ V |
86 | 85 | tpid3 4706 |
. . . . . . . . . . . 12
⊢ (𝐾‘(𝐼‘𝐴)) ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} |
87 | 62, 86 | sselii 3914 |
. . . . . . . . . . 11
⊢ (𝐾‘(𝐼‘𝐴)) ∈ 𝑇 |
88 | 80, 84, 87 | kur14lem1 33068 |
. . . . . . . . . 10
⊢ (𝑁 = (𝐼‘𝐴) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
89 | 66, 78, 88 | 3jaoi 1425 |
. . . . . . . . 9
⊢ ((𝑁 = 𝐵 ∨ 𝑁 = 𝐶 ∨ 𝑁 = (𝐼‘𝐴)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
90 | 56, 89 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ {𝐵, 𝐶, (𝐼‘𝐴)} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
91 | 55, 90 | jaoi 853 |
. . . . . . 7
⊢ ((𝑁 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∨ 𝑁 ∈ {𝐵, 𝐶, (𝐼‘𝐴)}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
92 | 3, 91 | sylbi 216 |
. . . . . 6
⊢ (𝑁 ∈ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
93 | | eltpi 4620 |
. . . . . . 7
⊢ (𝑁 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} → (𝑁 = (𝐾‘𝐵) ∨ 𝑁 = 𝐷 ∨ 𝑁 = (𝐾‘(𝐼‘𝐴)))) |
94 | 13, 14, 26, 27, 46 | kur14lem3 33070 |
. . . . . . . . 9
⊢ (𝐾‘𝐵) ⊆ 𝑋 |
95 | 13, 14, 26, 27, 43 | kur14lem2 33069 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘𝐴)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) |
96 | | kur14lem.d |
. . . . . . . . . . 11
⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) |
97 | 44 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐵) = (𝐾‘(𝑋 ∖ (𝐾‘𝐴))) |
98 | 97 | difeq2i 4050 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) |
99 | 95, 96, 98 | 3eqtr4i 2776 |
. . . . . . . . . 10
⊢ 𝐷 = (𝑋 ∖ (𝐾‘𝐵)) |
100 | 96, 95 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) |
101 | | difss 4062 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) ⊆ 𝑋 |
102 | 100, 101 | eqsstri 3951 |
. . . . . . . . . . . . 13
⊢ 𝐷 ⊆ 𝑋 |
103 | 17, 102 | ssexi 5241 |
. . . . . . . . . . . 12
⊢ 𝐷 ∈ V |
104 | 103 | tpid2 4703 |
. . . . . . . . . . 11
⊢ 𝐷 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} |
105 | 62, 104 | sselii 3914 |
. . . . . . . . . 10
⊢ 𝐷 ∈ 𝑇 |
106 | 99, 105 | eqeltrri 2836 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐾‘𝐵)) ∈ 𝑇 |
107 | 13, 14, 26, 27, 46 | kur14lem5 33072 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐾‘𝐵)) = (𝐾‘𝐵) |
108 | 107, 65 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝐾‘(𝐾‘𝐵)) ∈ 𝑇 |
109 | 94, 106, 108 | kur14lem1 33068 |
. . . . . . . 8
⊢ (𝑁 = (𝐾‘𝐵) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
110 | 99 | difeq2i 4050 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝐷) = (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐵))) |
111 | 13, 14, 26, 27, 94 | kur14lem4 33071 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐵))) = (𝐾‘𝐵) |
112 | 110, 111 | eqtri 2766 |
. . . . . . . . . 10
⊢ (𝑋 ∖ 𝐷) = (𝐾‘𝐵) |
113 | 112, 65 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝑋 ∖ 𝐷) ∈ 𝑇 |
114 | | ssun1 4102 |
. . . . . . . . . . 11
⊢ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ⊆ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) |
115 | | ssun2 4103 |
. . . . . . . . . . . 12
⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ⊆ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
116 | 115, 9 | sseqtrri 3954 |
. . . . . . . . . . 11
⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ⊆ 𝑇 |
117 | 114, 116 | sstri 3926 |
. . . . . . . . . 10
⊢ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ⊆ 𝑇 |
118 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐷) ∈ V |
119 | 118 | tpid2 4703 |
. . . . . . . . . 10
⊢ (𝐾‘𝐷) ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} |
120 | 117, 119 | sselii 3914 |
. . . . . . . . 9
⊢ (𝐾‘𝐷) ∈ 𝑇 |
121 | 102, 113,
120 | kur14lem1 33068 |
. . . . . . . 8
⊢ (𝑁 = 𝐷 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
122 | 13, 14, 26, 27, 80 | kur14lem3 33070 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘𝐴)) ⊆ 𝑋 |
123 | 13, 14, 26, 27, 37 | kur14lem2 33069 |
. . . . . . . . . . 11
⊢ (𝐼‘𝐶) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐶))) |
124 | 69 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢ (𝐾‘(𝑋 ∖ 𝐶)) = (𝐾‘(𝐼‘𝐴)) |
125 | 124 | difeq2i 4050 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐶))) = (𝑋 ∖ (𝐾‘(𝐼‘𝐴))) |
126 | 123, 125 | eqtri 2766 |
. . . . . . . . . 10
⊢ (𝐼‘𝐶) = (𝑋 ∖ (𝐾‘(𝐼‘𝐴))) |
127 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (𝐼‘𝐶) ∈ V |
128 | 127 | tpid1 4701 |
. . . . . . . . . . 11
⊢ (𝐼‘𝐶) ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} |
129 | 117, 128 | sselii 3914 |
. . . . . . . . . 10
⊢ (𝐼‘𝐶) ∈ 𝑇 |
130 | 126, 129 | eqeltrri 2836 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐾‘(𝐼‘𝐴))) ∈ 𝑇 |
131 | 13, 14, 26, 27, 80 | kur14lem5 33072 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐾‘(𝐼‘𝐴))) = (𝐾‘(𝐼‘𝐴)) |
132 | 131, 87 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝐾‘(𝐾‘(𝐼‘𝐴))) ∈ 𝑇 |
133 | 122, 130,
132 | kur14lem1 33068 |
. . . . . . . 8
⊢ (𝑁 = (𝐾‘(𝐼‘𝐴)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
134 | 109, 121,
133 | 3jaoi 1425 |
. . . . . . 7
⊢ ((𝑁 = (𝐾‘𝐵) ∨ 𝑁 = 𝐷 ∨ 𝑁 = (𝐾‘(𝐼‘𝐴))) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
135 | 93, 134 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
136 | 92, 135 | jaoi 853 |
. . . . 5
⊢ ((𝑁 ∈ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∨ 𝑁 ∈ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
137 | 2, 136 | sylbi 216 |
. . . 4
⊢ (𝑁 ∈ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
138 | | elun 4079 |
. . . . 5
⊢ (𝑁 ∈ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ↔ (𝑁 ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∨ 𝑁 ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
139 | | eltpi 4620 |
. . . . . . 7
⊢ (𝑁 ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} → (𝑁 = (𝐼‘𝐶) ∨ 𝑁 = (𝐾‘𝐷) ∨ 𝑁 = (𝐼‘(𝐾‘𝐵)))) |
140 | | difss 4062 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐶))) ⊆ 𝑋 |
141 | 123, 140 | eqsstri 3951 |
. . . . . . . . 9
⊢ (𝐼‘𝐶) ⊆ 𝑋 |
142 | 126 | difeq2i 4050 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐼‘𝐶)) = (𝑋 ∖ (𝑋 ∖ (𝐾‘(𝐼‘𝐴)))) |
143 | 13, 14, 26, 27, 122 | kur14lem4 33071 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘(𝐼‘𝐴)))) = (𝐾‘(𝐼‘𝐴)) |
144 | 142, 143 | eqtri 2766 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐼‘𝐶)) = (𝐾‘(𝐼‘𝐴)) |
145 | 144, 87 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐼‘𝐶)) ∈ 𝑇 |
146 | | ssun2 4103 |
. . . . . . . . . . 11
⊢ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} ⊆ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) |
147 | 146, 116 | sstri 3926 |
. . . . . . . . . 10
⊢ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} ⊆ 𝑇 |
148 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐾‘(𝐼‘𝐶)) ∈ V |
149 | 148 | prid1 4695 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐼‘𝐶)) ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} |
150 | 147, 149 | sselii 3914 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘𝐶)) ∈ 𝑇 |
151 | 141, 145,
150 | kur14lem1 33068 |
. . . . . . . 8
⊢ (𝑁 = (𝐼‘𝐶) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
152 | 13, 14, 26, 27, 102 | kur14lem3 33070 |
. . . . . . . . 9
⊢ (𝐾‘𝐷) ⊆ 𝑋 |
153 | 99 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝐷) = (𝐾‘(𝑋 ∖ (𝐾‘𝐵))) |
154 | 153 | difeq2i 4050 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘𝐷)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵)))) |
155 | 13, 14, 26, 27, 94 | kur14lem2 33069 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵)))) |
156 | 154, 155 | eqtr4i 2769 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘𝐷)) = (𝐼‘(𝐾‘𝐵)) |
157 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (𝐼‘(𝐾‘𝐵)) ∈ V |
158 | 157 | tpid3 4706 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘𝐵)) ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} |
159 | 117, 158 | sselii 3914 |
. . . . . . . . . 10
⊢ (𝐼‘(𝐾‘𝐵)) ∈ 𝑇 |
160 | 156, 159 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐾‘𝐷)) ∈ 𝑇 |
161 | 13, 14, 26, 27, 102 | kur14lem5 33072 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐾‘𝐷)) = (𝐾‘𝐷) |
162 | 161, 120 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝐾‘(𝐾‘𝐷)) ∈ 𝑇 |
163 | 152, 160,
162 | kur14lem1 33068 |
. . . . . . . 8
⊢ (𝑁 = (𝐾‘𝐷) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
164 | | difss 4062 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵)))) ⊆ 𝑋 |
165 | 155, 164 | eqsstri 3951 |
. . . . . . . . 9
⊢ (𝐼‘(𝐾‘𝐵)) ⊆ 𝑋 |
166 | 156 | difeq2i 4050 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐷))) = (𝑋 ∖ (𝐼‘(𝐾‘𝐵))) |
167 | 13, 14, 26, 27, 152 | kur14lem4 33071 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘𝐷))) = (𝐾‘𝐷) |
168 | 166, 167 | eqtr3i 2768 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐼‘(𝐾‘𝐵))) = (𝐾‘𝐷) |
169 | 168, 120 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐼‘(𝐾‘𝐵))) ∈ 𝑇 |
170 | 13, 14, 26, 27, 5, 44 | kur14lem6 33073 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐼‘(𝐾‘𝐵))) = (𝐾‘𝐵) |
171 | 170, 65 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘(𝐾‘𝐵))) ∈ 𝑇 |
172 | 165, 169,
171 | kur14lem1 33068 |
. . . . . . . 8
⊢ (𝑁 = (𝐼‘(𝐾‘𝐵)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
173 | 151, 163,
172 | 3jaoi 1425 |
. . . . . . 7
⊢ ((𝑁 = (𝐼‘𝐶) ∨ 𝑁 = (𝐾‘𝐷) ∨ 𝑁 = (𝐼‘(𝐾‘𝐵))) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
174 | 139, 173 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
175 | | elpri 4580 |
. . . . . . 7
⊢ (𝑁 ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} → (𝑁 = (𝐾‘(𝐼‘𝐶)) ∨ 𝑁 = (𝐼‘(𝐾‘(𝐼‘𝐴))))) |
176 | 13, 14, 26, 27, 141 | kur14lem3 33070 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘𝐶)) ⊆ 𝑋 |
177 | 126 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢ (𝐾‘(𝐼‘𝐶)) = (𝐾‘(𝑋 ∖ (𝐾‘(𝐼‘𝐴)))) |
178 | 177 | difeq2i 4050 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝐾‘(𝐼‘𝐶))) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘(𝐼‘𝐴))))) |
179 | 13, 14, 26, 27, 122 | kur14lem2 33069 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘(𝐼‘𝐴))))) |
180 | 178, 179 | eqtr4i 2769 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘(𝐼‘𝐶))) = (𝐼‘(𝐾‘(𝐼‘𝐴))) |
181 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) ∈ V |
182 | 181 | prid2 4696 |
. . . . . . . . . . 11
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} |
183 | 147, 182 | sselii 3914 |
. . . . . . . . . 10
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) ∈ 𝑇 |
184 | 180, 183 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐾‘(𝐼‘𝐶))) ∈ 𝑇 |
185 | 13, 14, 26, 27, 141 | kur14lem5 33072 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐾‘(𝐼‘𝐶))) = (𝐾‘(𝐼‘𝐶)) |
186 | 185, 150 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝐾‘(𝐾‘(𝐼‘𝐶))) ∈ 𝑇 |
187 | 176, 184,
186 | kur14lem1 33068 |
. . . . . . . 8
⊢ (𝑁 = (𝐾‘(𝐼‘𝐶)) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
188 | | difss 4062 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘(𝐼‘𝐴))))) ⊆ 𝑋 |
189 | 179, 188 | eqsstri 3951 |
. . . . . . . . 9
⊢ (𝐼‘(𝐾‘(𝐼‘𝐴))) ⊆ 𝑋 |
190 | 180 | difeq2i 4050 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘(𝐼‘𝐶)))) = (𝑋 ∖ (𝐼‘(𝐾‘(𝐼‘𝐴)))) |
191 | 13, 14, 26, 27, 176 | kur14lem4 33071 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ (𝑋 ∖ (𝐾‘(𝐼‘𝐶)))) = (𝐾‘(𝐼‘𝐶)) |
192 | 190, 191 | eqtr3i 2768 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐼‘(𝐾‘(𝐼‘𝐴)))) = (𝐾‘(𝐼‘𝐶)) |
193 | 192, 150 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐼‘(𝐾‘(𝐼‘𝐴)))) ∈ 𝑇 |
194 | 13, 14, 26, 27, 18, 68 | kur14lem6 33073 |
. . . . . . . . . 10
⊢ (𝐾‘(𝐼‘(𝐾‘(𝐼‘𝐴)))) = (𝐾‘(𝐼‘𝐴)) |
195 | 194, 87 | eqeltri 2835 |
. . . . . . . . 9
⊢ (𝐾‘(𝐼‘(𝐾‘(𝐼‘𝐴)))) ∈ 𝑇 |
196 | 189, 193,
195 | kur14lem1 33068 |
. . . . . . . 8
⊢ (𝑁 = (𝐼‘(𝐾‘(𝐼‘𝐴))) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
197 | 187, 196 | jaoi 853 |
. . . . . . 7
⊢ ((𝑁 = (𝐾‘(𝐼‘𝐶)) ∨ 𝑁 = (𝐼‘(𝐾‘(𝐼‘𝐴)))) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
198 | 175, 197 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
199 | 174, 198 | jaoi 853 |
. . . . 5
⊢ ((𝑁 ∈ {(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∨ 𝑁 ∈ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
200 | 138, 199 | sylbi 216 |
. . . 4
⊢ (𝑁 ∈ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
201 | 137, 200 | jaoi 853 |
. . 3
⊢ ((𝑁 ∈ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∨ 𝑁 ∈ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
202 | 1, 201 | sylbi 216 |
. 2
⊢ (𝑁 ∈ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
203 | 202, 9 | eleq2s 2857 |
1
⊢ (𝑁 ∈ 𝑇 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |