![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem5 | Structured version Visualization version GIF version |
Description: Lemma for kur14 35186. Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | ⊢ 𝐽 ∈ Top |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
Ref | Expression |
---|---|
kur14lem5 | ⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
2 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
3 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | clsidm 23098 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴)) |
5 | 1, 2, 4 | mp2an 691 | . 2 ⊢ ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴) |
6 | kur14lem.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
7 | 6 | fveq1i 6923 | . . 3 ⊢ (𝐾‘𝐴) = ((cls‘𝐽)‘𝐴) |
8 | 6, 7 | fveq12i 6928 | . 2 ⊢ (𝐾‘(𝐾‘𝐴)) = ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) |
9 | 5, 8, 7 | 3eqtr4i 2778 | 1 ⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6575 Topctop 22922 intcnt 23048 clsccl 23049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-top 22923 df-cld 23050 df-cls 23052 |
This theorem is referenced by: kur14lem6 35181 kur14lem7 35182 |
Copyright terms: Public domain | W3C validator |