| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35162. Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem.j | ⊢ 𝐽 ∈ Top |
| kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
| kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
| kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
| kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
| Ref | Expression |
|---|---|
| kur14lem5 | ⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
| 2 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
| 3 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | clsidm 23040 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴)) |
| 5 | 1, 2, 4 | mp2an 692 | . 2 ⊢ ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴) |
| 6 | kur14lem.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
| 7 | 6 | fveq1i 6888 | . . 3 ⊢ (𝐾‘𝐴) = ((cls‘𝐽)‘𝐴) |
| 8 | 6, 7 | fveq12i 6893 | . 2 ⊢ (𝐾‘(𝐾‘𝐴)) = ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) |
| 9 | 5, 8, 7 | 3eqtr4i 2767 | 1 ⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 ∪ cuni 4889 ‘cfv 6542 Topctop 22866 intcnt 22990 clsccl 22991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-top 22867 df-cld 22992 df-cls 22994 |
| This theorem is referenced by: kur14lem6 35157 kur14lem7 35158 |
| Copyright terms: Public domain | W3C validator |