Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem5 | Structured version Visualization version GIF version |
Description: Lemma for kur14 33078. Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | ⊢ 𝐽 ∈ Top |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
Ref | Expression |
---|---|
kur14lem5 | ⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
2 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
3 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | clsidm 22126 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴)) |
5 | 1, 2, 4 | mp2an 688 | . 2 ⊢ ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴) |
6 | kur14lem.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
7 | 6 | fveq1i 6757 | . . 3 ⊢ (𝐾‘𝐴) = ((cls‘𝐽)‘𝐴) |
8 | 6, 7 | fveq12i 6762 | . 2 ⊢ (𝐾‘(𝐾‘𝐴)) = ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) |
9 | 5, 8, 7 | 3eqtr4i 2776 | 1 ⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 intcnt 22076 clsccl 22077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-cld 22078 df-cls 22080 |
This theorem is referenced by: kur14lem6 33073 kur14lem7 33074 |
Copyright terms: Public domain | W3C validator |