Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem5 Structured version   Visualization version   GIF version

Theorem kur14lem5 32571
Description: Lemma for kur14 32577. Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
Assertion
Ref Expression
kur14lem5 (𝐾‘(𝐾𝐴)) = (𝐾𝐴)

Proof of Theorem kur14lem5
StepHypRef Expression
1 kur14lem.j . . 3 𝐽 ∈ Top
2 kur14lem.a . . 3 𝐴𝑋
3 kur14lem.x . . . 4 𝑋 = 𝐽
43clsidm 21676 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴))
51, 2, 4mp2an 691 . 2 ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴)
6 kur14lem.k . . 3 𝐾 = (cls‘𝐽)
76fveq1i 6650 . . 3 (𝐾𝐴) = ((cls‘𝐽)‘𝐴)
86, 7fveq12i 6655 . 2 (𝐾‘(𝐾𝐴)) = ((cls‘𝐽)‘((cls‘𝐽)‘𝐴))
95, 8, 73eqtr4i 2834 1 (𝐾‘(𝐾𝐴)) = (𝐾𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2112  wss 3884   cuni 4803  cfv 6328  Topctop 21502  intcnt 21626  clsccl 21627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-top 21503  df-cld 21628  df-cls 21630
This theorem is referenced by:  kur14lem6  32572  kur14lem7  32573
  Copyright terms: Public domain W3C validator