Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem5 Structured version   Visualization version   GIF version

Theorem kur14lem5 35199
Description: Lemma for kur14 35205. Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
Assertion
Ref Expression
kur14lem5 (𝐾‘(𝐾𝐴)) = (𝐾𝐴)

Proof of Theorem kur14lem5
StepHypRef Expression
1 kur14lem.j . . 3 𝐽 ∈ Top
2 kur14lem.a . . 3 𝐴𝑋
3 kur14lem.x . . . 4 𝑋 = 𝐽
43clsidm 22960 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴))
51, 2, 4mp2an 692 . 2 ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴)
6 kur14lem.k . . 3 𝐾 = (cls‘𝐽)
76fveq1i 6866 . . 3 (𝐾𝐴) = ((cls‘𝐽)‘𝐴)
86, 7fveq12i 6871 . 2 (𝐾‘(𝐾𝐴)) = ((cls‘𝐽)‘((cls‘𝐽)‘𝐴))
95, 8, 73eqtr4i 2763 1 (𝐾‘(𝐾𝐴)) = (𝐾𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wss 3922   cuni 4879  cfv 6519  Topctop 22786  intcnt 22910  clsccl 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-top 22787  df-cld 22912  df-cls 22914
This theorem is referenced by:  kur14lem6  35200  kur14lem7  35201
  Copyright terms: Public domain W3C validator