Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14 Structured version   Visualization version   GIF version

Theorem kur14 35238
Description: Kuratowski's closure-complement theorem. There are at most 14 sets which can be obtained by the application of the closure and complement operations to a set in a topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14.x 𝑋 = 𝐽
kur14.k 𝐾 = (cls‘𝐽)
kur14.s 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
Assertion
Ref Expression
kur14 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem kur14
StepHypRef Expression
1 kur14.s . . . . . 6 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
2 eleq1 2822 . . . . . . . . 9 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → (𝐴𝑥 ↔ if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥))
32anbi1d 631 . . . . . . . 8 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → ((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)))
43rabbidv 3423 . . . . . . 7 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)})
54inteqd 4927 . . . . . 6 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)})
61, 5eqtrid 2782 . . . . 5 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)})
76eleq1d 2819 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → (𝑆 ∈ Fin ↔ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin))
86fveq2d 6880 . . . . 5 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → (♯‘𝑆) = (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}))
98breq1d 5129 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → ((♯‘𝑆) ≤ 14 ↔ (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14))
107, 9anbi12d 632 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → ((𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14) ↔ ( {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14)))
11 kur14.x . . . . . . . . . 10 𝑋 = 𝐽
12 unieq 4894 . . . . . . . . . 10 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}))
1311, 12eqtrid 2782 . . . . . . . . 9 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝑋 = if(𝐽 ∈ Top, 𝐽, {∅}))
1413pweqd 4592 . . . . . . . 8 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝒫 𝑋 = 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}))
1514pweqd 4592 . . . . . . 7 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝒫 𝒫 𝑋 = 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}))
1613sseq2d 3991 . . . . . . . . . . 11 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐴𝑋𝐴 if(𝐽 ∈ Top, 𝐽, {∅})))
17 sn0top 22937 . . . . . . . . . . . . . 14 {∅} ∈ Top
1817elimel 4570 . . . . . . . . . . . . 13 if(𝐽 ∈ Top, 𝐽, {∅}) ∈ Top
19 uniexg 7734 . . . . . . . . . . . . 13 (if(𝐽 ∈ Top, 𝐽, {∅}) ∈ Top → if(𝐽 ∈ Top, 𝐽, {∅}) ∈ V)
2018, 19ax-mp 5 . . . . . . . . . . . 12 if(𝐽 ∈ Top, 𝐽, {∅}) ∈ V
2120elpw2 5304 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ↔ 𝐴 if(𝐽 ∈ Top, 𝐽, {∅}))
2216, 21bitr4di 289 . . . . . . . . . 10 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐴𝑋𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅})))
2322ifbid 4524 . . . . . . . . 9 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → if(𝐴𝑋, 𝐴, ∅) = if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅))
2423eleq1d 2819 . . . . . . . 8 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ↔ if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥))
2513difeq1d 4100 . . . . . . . . . . 11 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝑋𝑦) = ( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦))
26 kur14.k . . . . . . . . . . . . 13 𝐾 = (cls‘𝐽)
27 fveq2 6876 . . . . . . . . . . . . 13 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (cls‘𝐽) = (cls‘if(𝐽 ∈ Top, 𝐽, {∅})))
2826, 27eqtrid 2782 . . . . . . . . . . . 12 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝐾 = (cls‘if(𝐽 ∈ Top, 𝐽, {∅})))
2928fveq1d 6878 . . . . . . . . . . 11 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐾𝑦) = ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦))
3025, 29preq12d 4717 . . . . . . . . . 10 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {(𝑋𝑦), (𝐾𝑦)} = {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)})
3130sseq1d 3990 . . . . . . . . 9 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ({(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥))
3231ralbidv 3163 . . . . . . . 8 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥))
3324, 32anbi12d 632 . . . . . . 7 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ((if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)))
3415, 33rabeqbidv 3434 . . . . . 6 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)})
3534inteqd 4927 . . . . 5 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)})
3635eleq1d 2819 . . . 4 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ( {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin ↔ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin))
3735fveq2d 6880 . . . . 5 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) = (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}))
3837breq1d 5129 . . . 4 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ((♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14 ↔ (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ 14))
3936, 38anbi12d 632 . . 3 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (( {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14) ↔ ( {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ 14)))
40 eqid 2735 . . . 4 if(𝐽 ∈ Top, 𝐽, {∅}) = if(𝐽 ∈ Top, 𝐽, {∅})
41 eqid 2735 . . . 4 (cls‘if(𝐽 ∈ Top, 𝐽, {∅})) = (cls‘if(𝐽 ∈ Top, 𝐽, {∅}))
42 eqid 2735 . . . 4 {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}
43 0elpw 5326 . . . . . 6 ∅ ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅})
4443elimel 4570 . . . . 5 if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅})
45 elpwi 4582 . . . . 5 (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) → if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ⊆ if(𝐽 ∈ Top, 𝐽, {∅}))
4644, 45ax-mp 5 . . . 4 if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ⊆ if(𝐽 ∈ Top, 𝐽, {∅})
4718, 40, 41, 42, 46kur14lem10 35237 . . 3 ( {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ 14)
4810, 39, 47dedth2h 4560 . 2 ((𝐴𝑋𝐽 ∈ Top) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14))
4948ancoms 458 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  wss 3926  c0 4308  ifcif 4500  𝒫 cpw 4575  {csn 4601  {cpr 4603   cuni 4883   cint 4922   class class class wbr 5119  cfv 6531  Fincfn 8959  1c1 11130  cle 11270  4c4 12297  cdc 12708  chash 14348  Topctop 22831  clsccl 22956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-hash 14349  df-top 22832  df-topon 22849  df-cld 22957  df-ntr 22958  df-cls 22959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator