Proof of Theorem kur14
Step | Hyp | Ref
| Expression |
1 | | kur14.s |
. . . . . 6
⊢ 𝑆 = ∩
{𝑥 ∈ 𝒫
𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} |
2 | | eleq1 2839 |
. . . . . . . . 9
⊢ (𝐴 = if(𝐴 ⊆ 𝑋, 𝐴, ∅) → (𝐴 ∈ 𝑥 ↔ if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥)) |
3 | 2 | anbi1d 632 |
. . . . . . . 8
⊢ (𝐴 = if(𝐴 ⊆ 𝑋, 𝐴, ∅) → ((𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥) ↔ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥))) |
4 | 3 | rabbidv 3392 |
. . . . . . 7
⊢ (𝐴 = if(𝐴 ⊆ 𝑋, 𝐴, ∅) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)}) |
5 | 4 | inteqd 4846 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ⊆ 𝑋, 𝐴, ∅) → ∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} = ∩ {𝑥 ∈ 𝒫 𝒫
𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)}) |
6 | 1, 5 | syl5eq 2805 |
. . . . 5
⊢ (𝐴 = if(𝐴 ⊆ 𝑋, 𝐴, ∅) → 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫
𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)}) |
7 | 6 | eleq1d 2836 |
. . . 4
⊢ (𝐴 = if(𝐴 ⊆ 𝑋, 𝐴, ∅) → (𝑆 ∈ Fin ↔ ∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} ∈ Fin)) |
8 | 6 | fveq2d 6667 |
. . . . 5
⊢ (𝐴 = if(𝐴 ⊆ 𝑋, 𝐴, ∅) → (♯‘𝑆) = (♯‘∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)})) |
9 | 8 | breq1d 5046 |
. . . 4
⊢ (𝐴 = if(𝐴 ⊆ 𝑋, 𝐴, ∅) → ((♯‘𝑆) ≤ ;14 ↔ (♯‘∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)}) ≤ ;14)) |
10 | 7, 9 | anbi12d 633 |
. . 3
⊢ (𝐴 = if(𝐴 ⊆ 𝑋, 𝐴, ∅) → ((𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14) ↔ (∩ {𝑥 ∈ 𝒫 𝒫
𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)}) ≤ ;14))) |
11 | | kur14.x |
. . . . . . . . . 10
⊢ 𝑋 = ∪
𝐽 |
12 | | unieq 4812 |
. . . . . . . . . 10
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ∪ 𝐽 =
∪ if(𝐽 ∈ Top, 𝐽, {∅})) |
13 | 11, 12 | syl5eq 2805 |
. . . . . . . . 9
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝑋 = ∪ if(𝐽 ∈ Top, 𝐽, {∅})) |
14 | 13 | pweqd 4516 |
. . . . . . . 8
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝒫 𝑋 = 𝒫 ∪ if(𝐽
∈ Top, 𝐽,
{∅})) |
15 | 14 | pweqd 4516 |
. . . . . . 7
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝒫 𝒫
𝑋 = 𝒫 𝒫
∪ if(𝐽 ∈ Top, 𝐽, {∅})) |
16 | 13 | sseq2d 3926 |
. . . . . . . . . . 11
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ ∪
if(𝐽 ∈ Top, 𝐽, {∅}))) |
17 | | sn0top 21713 |
. . . . . . . . . . . . . 14
⊢ {∅}
∈ Top |
18 | 17 | elimel 4492 |
. . . . . . . . . . . . 13
⊢ if(𝐽 ∈ Top, 𝐽, {∅}) ∈ Top |
19 | | uniexg 7470 |
. . . . . . . . . . . . 13
⊢ (if(𝐽 ∈ Top, 𝐽, {∅}) ∈ Top → ∪ if(𝐽
∈ Top, 𝐽, {∅})
∈ V) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ∪ if(𝐽
∈ Top, 𝐽, {∅})
∈ V |
21 | 20 | elpw2 5219 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅})
↔ 𝐴 ⊆ ∪ if(𝐽
∈ Top, 𝐽,
{∅})) |
22 | 16, 21 | bitr4di 292 |
. . . . . . . . . 10
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐴 ⊆ 𝑋 ↔ 𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽,
{∅}))) |
23 | 22 | ifbid 4446 |
. . . . . . . . 9
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → if(𝐴 ⊆ 𝑋, 𝐴, ∅) = if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴,
∅)) |
24 | 23 | eleq1d 2836 |
. . . . . . . 8
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ↔ if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥)) |
25 | 13 | difeq1d 4029 |
. . . . . . . . . . 11
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝑋 ∖ 𝑦) = (∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦)) |
26 | | kur14.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (cls‘𝐽) |
27 | | fveq2 6663 |
. . . . . . . . . . . . 13
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (cls‘𝐽) = (cls‘if(𝐽 ∈ Top, 𝐽, {∅}))) |
28 | 26, 27 | syl5eq 2805 |
. . . . . . . . . . . 12
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝐾 = (cls‘if(𝐽 ∈ Top, 𝐽, {∅}))) |
29 | 28 | fveq1d 6665 |
. . . . . . . . . . 11
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐾‘𝑦) = ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)) |
30 | 25, 29 | preq12d 4637 |
. . . . . . . . . 10
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} = {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)}) |
31 | 30 | sseq1d 3925 |
. . . . . . . . 9
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ({(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥 ↔ {(∪
if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)) |
32 | 31 | ralbidv 3126 |
. . . . . . . 8
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)) |
33 | 24, 32 | anbi12d 633 |
. . . . . . 7
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ((if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥) ↔ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥))) |
34 | 15, 33 | rabeqbidv 3398 |
. . . . . 6
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅})
∣ (if(𝐴 ∈
𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) |
35 | 34 | inteqd 4846 |
. . . . 5
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} = ∩ {𝑥 ∈ 𝒫 𝒫
∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) |
36 | 35 | eleq1d 2836 |
. . . 4
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} ∈ Fin ↔ ∩ {𝑥
∈ 𝒫 𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin)) |
37 | 35 | fveq2d 6667 |
. . . . 5
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (♯‘∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)}) = (♯‘∩ {𝑥
∈ 𝒫 𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)})) |
38 | 37 | breq1d 5046 |
. . . 4
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ((♯‘∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)}) ≤ ;14 ↔ (♯‘∩ {𝑥
∈ 𝒫 𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ ;14)) |
39 | 36, 38 | anbi12d 633 |
. . 3
⊢ (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ((∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴 ⊆ 𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)}) ≤ ;14) ↔ (∩ {𝑥 ∈ 𝒫 𝒫
∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘∩ {𝑥
∈ 𝒫 𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ ;14))) |
40 | | eqid 2758 |
. . . 4
⊢ ∪ if(𝐽
∈ Top, 𝐽, {∅}) =
∪ if(𝐽 ∈ Top, 𝐽, {∅}) |
41 | | eqid 2758 |
. . . 4
⊢
(cls‘if(𝐽
∈ Top, 𝐽, {∅}))
= (cls‘if(𝐽 ∈
Top, 𝐽,
{∅})) |
42 | | eqid 2758 |
. . . 4
⊢ ∩ {𝑥
∈ 𝒫 𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} = ∩ {𝑥 ∈ 𝒫 𝒫
∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} |
43 | | 0elpw 5228 |
. . . . . 6
⊢ ∅
∈ 𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) |
44 | 43 | elimel 4492 |
. . . . 5
⊢ if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈
𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) |
45 | | elpwi 4506 |
. . . . 5
⊢ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈
𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) → if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ⊆ ∪ if(𝐽
∈ Top, 𝐽,
{∅})) |
46 | 44, 45 | ax-mp 5 |
. . . 4
⊢ if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ⊆ ∪ if(𝐽
∈ Top, 𝐽,
{∅}) |
47 | 18, 40, 41, 42, 46 | kur14lem10 32706 |
. . 3
⊢ (∩ {𝑥
∈ 𝒫 𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘∩ {𝑥
∈ 𝒫 𝒫 ∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 ∪ if(𝐽
∈ Top, 𝐽, {∅}),
𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(∪ if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ ;14) |
48 | 10, 39, 47 | dedth2h 4482 |
. 2
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐽 ∈ Top) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14)) |
49 | 48 | ancoms 462 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14)) |