Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14 Structured version   Visualization version   GIF version

Theorem kur14 33178
Description: Kuratowski's closure-complement theorem. There are at most 14 sets which can be obtained by the application of the closure and complement operations to a set in a topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14.x 𝑋 = 𝐽
kur14.k 𝐾 = (cls‘𝐽)
kur14.s 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
Assertion
Ref Expression
kur14 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem kur14
StepHypRef Expression
1 kur14.s . . . . . 6 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
2 eleq1 2826 . . . . . . . . 9 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → (𝐴𝑥 ↔ if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥))
32anbi1d 630 . . . . . . . 8 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → ((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)))
43rabbidv 3414 . . . . . . 7 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)})
54inteqd 4884 . . . . . 6 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)})
61, 5eqtrid 2790 . . . . 5 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)})
76eleq1d 2823 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → (𝑆 ∈ Fin ↔ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin))
86fveq2d 6778 . . . . 5 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → (♯‘𝑆) = (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}))
98breq1d 5084 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → ((♯‘𝑆) ≤ 14 ↔ (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14))
107, 9anbi12d 631 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → ((𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14) ↔ ( {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14)))
11 kur14.x . . . . . . . . . 10 𝑋 = 𝐽
12 unieq 4850 . . . . . . . . . 10 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}))
1311, 12eqtrid 2790 . . . . . . . . 9 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝑋 = if(𝐽 ∈ Top, 𝐽, {∅}))
1413pweqd 4552 . . . . . . . 8 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝒫 𝑋 = 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}))
1514pweqd 4552 . . . . . . 7 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝒫 𝒫 𝑋 = 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}))
1613sseq2d 3953 . . . . . . . . . . 11 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐴𝑋𝐴 if(𝐽 ∈ Top, 𝐽, {∅})))
17 sn0top 22149 . . . . . . . . . . . . . 14 {∅} ∈ Top
1817elimel 4528 . . . . . . . . . . . . 13 if(𝐽 ∈ Top, 𝐽, {∅}) ∈ Top
19 uniexg 7593 . . . . . . . . . . . . 13 (if(𝐽 ∈ Top, 𝐽, {∅}) ∈ Top → if(𝐽 ∈ Top, 𝐽, {∅}) ∈ V)
2018, 19ax-mp 5 . . . . . . . . . . . 12 if(𝐽 ∈ Top, 𝐽, {∅}) ∈ V
2120elpw2 5269 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ↔ 𝐴 if(𝐽 ∈ Top, 𝐽, {∅}))
2216, 21bitr4di 289 . . . . . . . . . 10 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐴𝑋𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅})))
2322ifbid 4482 . . . . . . . . 9 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → if(𝐴𝑋, 𝐴, ∅) = if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅))
2423eleq1d 2823 . . . . . . . 8 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ↔ if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥))
2513difeq1d 4056 . . . . . . . . . . 11 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝑋𝑦) = ( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦))
26 kur14.k . . . . . . . . . . . . 13 𝐾 = (cls‘𝐽)
27 fveq2 6774 . . . . . . . . . . . . 13 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (cls‘𝐽) = (cls‘if(𝐽 ∈ Top, 𝐽, {∅})))
2826, 27eqtrid 2790 . . . . . . . . . . . 12 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝐾 = (cls‘if(𝐽 ∈ Top, 𝐽, {∅})))
2928fveq1d 6776 . . . . . . . . . . 11 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐾𝑦) = ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦))
3025, 29preq12d 4677 . . . . . . . . . 10 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {(𝑋𝑦), (𝐾𝑦)} = {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)})
3130sseq1d 3952 . . . . . . . . 9 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ({(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥))
3231ralbidv 3112 . . . . . . . 8 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥))
3324, 32anbi12d 631 . . . . . . 7 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ((if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)))
3415, 33rabeqbidv 3420 . . . . . 6 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)})
3534inteqd 4884 . . . . 5 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)})
3635eleq1d 2823 . . . 4 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ( {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin ↔ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin))
3735fveq2d 6778 . . . . 5 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) = (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}))
3837breq1d 5084 . . . 4 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ((♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14 ↔ (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ 14))
3936, 38anbi12d 631 . . 3 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (( {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14) ↔ ( {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ 14)))
40 eqid 2738 . . . 4 if(𝐽 ∈ Top, 𝐽, {∅}) = if(𝐽 ∈ Top, 𝐽, {∅})
41 eqid 2738 . . . 4 (cls‘if(𝐽 ∈ Top, 𝐽, {∅})) = (cls‘if(𝐽 ∈ Top, 𝐽, {∅}))
42 eqid 2738 . . . 4 {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}
43 0elpw 5278 . . . . . 6 ∅ ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅})
4443elimel 4528 . . . . 5 if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅})
45 elpwi 4542 . . . . 5 (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) → if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ⊆ if(𝐽 ∈ Top, 𝐽, {∅}))
4644, 45ax-mp 5 . . . 4 if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ⊆ if(𝐽 ∈ Top, 𝐽, {∅})
4718, 40, 41, 42, 46kur14lem10 33177 . . 3 ( {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ 14)
4810, 39, 47dedth2h 4518 . 2 ((𝐴𝑋𝐽 ∈ Top) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14))
4948ancoms 459 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  c0 4256  ifcif 4459  𝒫 cpw 4533  {csn 4561  {cpr 4563   cuni 4839   cint 4879   class class class wbr 5074  cfv 6433  Fincfn 8733  1c1 10872  cle 11010  4c4 12030  cdc 12437  chash 14044  Topctop 22042  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-hash 14045  df-top 22043  df-topon 22060  df-cld 22170  df-ntr 22171  df-cls 22172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator