![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem3 | Structured version Visualization version GIF version |
Description: Lemma for kur14 35176. A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | ⊢ 𝐽 ∈ Top |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
Ref | Expression |
---|---|
kur14lem3 | ⊢ (𝐾‘𝐴) ⊆ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
2 | 1 | fveq1i 6920 | . 2 ⊢ (𝐾‘𝐴) = ((cls‘𝐽)‘𝐴) |
3 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
4 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
5 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
6 | 5 | clsss3 23081 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
7 | 3, 4, 6 | mp2an 691 | . 2 ⊢ ((cls‘𝐽)‘𝐴) ⊆ 𝑋 |
8 | 2, 7 | eqsstri 4037 | 1 ⊢ (𝐾‘𝐴) ⊆ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2103 ⊆ wss 3970 ∪ cuni 4931 ‘cfv 6572 Topctop 22913 intcnt 23039 clsccl 23040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-iin 5022 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-top 22914 df-cld 23041 df-cls 23043 |
This theorem is referenced by: kur14lem6 35171 kur14lem7 35172 |
Copyright terms: Public domain | W3C validator |