Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem3 Structured version   Visualization version   GIF version

Theorem kur14lem3 33170
Description: Lemma for kur14 33178. A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
Assertion
Ref Expression
kur14lem3 (𝐾𝐴) ⊆ 𝑋

Proof of Theorem kur14lem3
StepHypRef Expression
1 kur14lem.k . . 3 𝐾 = (cls‘𝐽)
21fveq1i 6775 . 2 (𝐾𝐴) = ((cls‘𝐽)‘𝐴)
3 kur14lem.j . . 3 𝐽 ∈ Top
4 kur14lem.a . . 3 𝐴𝑋
5 kur14lem.x . . . 4 𝑋 = 𝐽
65clsss3 22210 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
73, 4, 6mp2an 689 . 2 ((cls‘𝐽)‘𝐴) ⊆ 𝑋
82, 7eqsstri 3955 1 (𝐾𝐴) ⊆ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wss 3887   cuni 4839  cfv 6433  Topctop 22042  intcnt 22168  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-cls 22172
This theorem is referenced by:  kur14lem6  33173  kur14lem7  33174
  Copyright terms: Public domain W3C validator