| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35205. A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem.j | ⊢ 𝐽 ∈ Top |
| kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
| kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
| kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
| kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
| Ref | Expression |
|---|---|
| kur14lem3 | ⊢ (𝐾‘𝐴) ⊆ 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
| 2 | 1 | fveq1i 6866 | . 2 ⊢ (𝐾‘𝐴) = ((cls‘𝐽)‘𝐴) |
| 3 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
| 4 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
| 5 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 6 | 5 | clsss3 22952 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
| 7 | 3, 4, 6 | mp2an 692 | . 2 ⊢ ((cls‘𝐽)‘𝐴) ⊆ 𝑋 |
| 8 | 2, 7 | eqsstri 4001 | 1 ⊢ (𝐾‘𝐴) ⊆ 𝑋 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 ∪ cuni 4879 ‘cfv 6519 Topctop 22786 intcnt 22910 clsccl 22911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-top 22787 df-cld 22912 df-cls 22914 |
| This theorem is referenced by: kur14lem6 35200 kur14lem7 35201 |
| Copyright terms: Public domain | W3C validator |