Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem3 Structured version   Visualization version   GIF version

Theorem kur14lem3 35205
Description: Lemma for kur14 35213. A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
Assertion
Ref Expression
kur14lem3 (𝐾𝐴) ⊆ 𝑋

Proof of Theorem kur14lem3
StepHypRef Expression
1 kur14lem.k . . 3 𝐾 = (cls‘𝐽)
21fveq1i 6912 . 2 (𝐾𝐴) = ((cls‘𝐽)‘𝐴)
3 kur14lem.j . . 3 𝐽 ∈ Top
4 kur14lem.a . . 3 𝐴𝑋
5 kur14lem.x . . . 4 𝑋 = 𝐽
65clsss3 23089 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
73, 4, 6mp2an 692 . 2 ((cls‘𝐽)‘𝐴) ⊆ 𝑋
82, 7eqsstri 4031 1 (𝐾𝐴) ⊆ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2107  wss 3964   cuni 4913  cfv 6566  Topctop 22921  intcnt 23047  clsccl 23048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-top 22922  df-cld 23049  df-cls 23051
This theorem is referenced by:  kur14lem6  35208  kur14lem7  35209
  Copyright terms: Public domain W3C validator