![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem3 | Structured version Visualization version GIF version |
Description: Lemma for kur14 31805. A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | ⊢ 𝐽 ∈ Top |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
Ref | Expression |
---|---|
kur14lem3 | ⊢ (𝐾‘𝐴) ⊆ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
2 | 1 | fveq1i 6449 | . 2 ⊢ (𝐾‘𝐴) = ((cls‘𝐽)‘𝐴) |
3 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
4 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
5 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
6 | 5 | clsss3 21282 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
7 | 3, 4, 6 | mp2an 682 | . 2 ⊢ ((cls‘𝐽)‘𝐴) ⊆ 𝑋 |
8 | 2, 7 | eqsstri 3854 | 1 ⊢ (𝐾‘𝐴) ⊆ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ∪ cuni 4673 ‘cfv 6137 Topctop 21116 intcnt 21240 clsccl 21241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-top 21117 df-cld 21242 df-cls 21244 |
This theorem is referenced by: kur14lem6 31800 kur14lem7 31801 |
Copyright terms: Public domain | W3C validator |