Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem3 Structured version   Visualization version   GIF version

Theorem kur14lem3 35168
Description: Lemma for kur14 35176. A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
Assertion
Ref Expression
kur14lem3 (𝐾𝐴) ⊆ 𝑋

Proof of Theorem kur14lem3
StepHypRef Expression
1 kur14lem.k . . 3 𝐾 = (cls‘𝐽)
21fveq1i 6920 . 2 (𝐾𝐴) = ((cls‘𝐽)‘𝐴)
3 kur14lem.j . . 3 𝐽 ∈ Top
4 kur14lem.a . . 3 𝐴𝑋
5 kur14lem.x . . . 4 𝑋 = 𝐽
65clsss3 23081 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
73, 4, 6mp2an 691 . 2 ((cls‘𝐽)‘𝐴) ⊆ 𝑋
82, 7eqsstri 4037 1 (𝐾𝐴) ⊆ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2103  wss 3970   cuni 4931  cfv 6572  Topctop 22913  intcnt 23039  clsccl 23040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-top 22914  df-cld 23041  df-cls 23043
This theorem is referenced by:  kur14lem6  35171  kur14lem7  35172
  Copyright terms: Public domain W3C validator