| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35196. A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem.j | ⊢ 𝐽 ∈ Top |
| kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
| kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
| kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
| kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
| Ref | Expression |
|---|---|
| kur14lem3 | ⊢ (𝐾‘𝐴) ⊆ 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
| 2 | 1 | fveq1i 6841 | . 2 ⊢ (𝐾‘𝐴) = ((cls‘𝐽)‘𝐴) |
| 3 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
| 4 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
| 5 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 6 | 5 | clsss3 22979 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
| 7 | 3, 4, 6 | mp2an 692 | . 2 ⊢ ((cls‘𝐽)‘𝐴) ⊆ 𝑋 |
| 8 | 2, 7 | eqsstri 3990 | 1 ⊢ (𝐾‘𝐴) ⊆ 𝑋 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∪ cuni 4867 ‘cfv 6499 Topctop 22813 intcnt 22937 clsccl 22938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-top 22814 df-cld 22939 df-cls 22941 |
| This theorem is referenced by: kur14lem6 35191 kur14lem7 35192 |
| Copyright terms: Public domain | W3C validator |