![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelre | Structured version Visualization version GIF version |
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelre | ⊢ <ℝ ⊆ (ℝ × ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lt 11122 | . 2 ⊢ <ℝ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))} | |
2 | opabssxp 5761 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ) | |
3 | 1, 2 | eqsstri 4011 | 1 ⊢ <ℝ ⊆ (ℝ × ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⊆ wss 3943 ⟨cop 4629 class class class wbr 5141 {copab 5203 × cxp 5667 0Rc0r 10860 <R cltr 10865 ℝcr 11108 <ℝ cltrr 11113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-ss 3960 df-opab 5204 df-xp 5675 df-lt 11122 |
This theorem is referenced by: ltresr 11134 |
Copyright terms: Public domain | W3C validator |