| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelre | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelre | ⊢ <ℝ ⊆ (ℝ × ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lt 11147 | . 2 ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | |
| 2 | opabssxp 5752 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ) | |
| 3 | 1, 2 | eqsstri 4010 | 1 ⊢ <ℝ ⊆ (ℝ × ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3931 〈cop 4612 class class class wbr 5124 {copab 5186 × cxp 5657 0Rc0r 10885 <R cltr 10890 ℝcr 11133 <ℝ cltrr 11138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-ss 3948 df-opab 5187 df-xp 5665 df-lt 11147 |
| This theorem is referenced by: ltresr 11159 |
| Copyright terms: Public domain | W3C validator |