MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelre Structured version   Visualization version   GIF version

Theorem ltrelre 11063
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelre < ⊆ (ℝ × ℝ)

Proof of Theorem ltrelre
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lt 11057 . 2 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
2 opabssxp 5723 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ)
31, 2eqsstri 3990 1 < ⊆ (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  wss 3911  cop 4591   class class class wbr 5102  {copab 5164   × cxp 5629  0Rc0r 10795   <R cltr 10800  cr 11043   < cltrr 11048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-ss 3928  df-opab 5165  df-xp 5637  df-lt 11057
This theorem is referenced by:  ltresr  11069
  Copyright terms: Public domain W3C validator