MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelre Structured version   Visualization version   GIF version

Theorem ltrelre 10549
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelre < ⊆ (ℝ × ℝ)

Proof of Theorem ltrelre
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lt 10543 . 2 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
2 opabssxp 5611 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ)
31, 2eqsstri 3952 1 < ⊆ (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wex 1781  wcel 2112  wss 3884  cop 4534   class class class wbr 5033  {copab 5095   × cxp 5521  0Rc0r 10281   <R cltr 10286  cr 10529   < cltrr 10534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-in 3891  df-ss 3901  df-opab 5096  df-xp 5529  df-lt 10543
This theorem is referenced by:  ltresr  10555
  Copyright terms: Public domain W3C validator