| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelre | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelre | ⊢ <ℝ ⊆ (ℝ × ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lt 11014 | . 2 ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | |
| 2 | opabssxp 5703 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ) | |
| 3 | 1, 2 | eqsstri 3976 | 1 ⊢ <ℝ ⊆ (ℝ × ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ⊆ wss 3897 〈cop 4577 class class class wbr 5086 {copab 5148 × cxp 5609 0Rc0r 10752 <R cltr 10757 ℝcr 11000 <ℝ cltrr 11005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ss 3914 df-opab 5149 df-xp 5617 df-lt 11014 |
| This theorem is referenced by: ltresr 11026 |
| Copyright terms: Public domain | W3C validator |